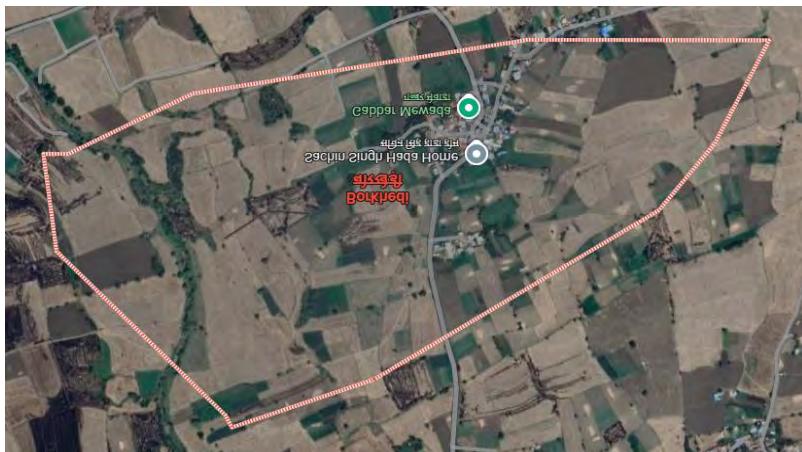
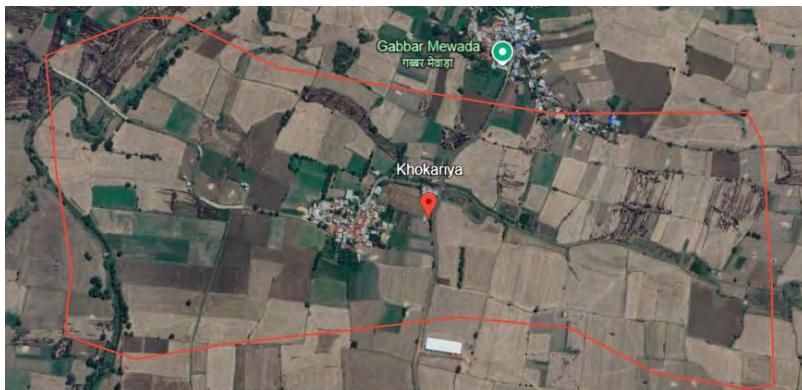


Interim Progress Report

VCM Pilot Project: “Soil Carbon Sequestration and Greenhouse Gas Reduction through Sustainable Agricultural Practices for Central India”


Project Period Covered: June – October 2025

Implementing Institute: ICAR-Indian Institute of Soil Science (IISS), Nabibagh, Bhopal


Principal Investigator: Dr. Sangeeta Lenka, principal Scientist

1. Background

The project received financial sanction on 1st June 2025, and implementation activities commenced thereafter. This project aims to demonstrate the potential of soil carbon sequestration and greenhouse gas (GHG) reduction through sustainable agricultural practices in central India. Pilot interventions are being carried out in three villages of Phanda block, Bhopal district: Borkhedi, Doobdi, and Khokharia. The total project area under consideration is approximately 150 acres.

Borkhedi village

Khokharia village

Doobdi village

2. Stakeholder Engagement

Engagement with stakeholders has been central to the project's progress. In the inception phase, several meetings were conducted with farmers, Farmer Producer Organizations (FPOs), village Sarpanch, and lead farmers to sensitize them about the key benefits of carbon credits, sustainable soil health management, and carbon farming. These meetings played a crucial role in raising awareness, building confidence, and selecting target villages and farmer participants for the pilot interventions.

Huzur, Bhopal Division | 2025.06.25 12:36

Huzur, Bhopal Division | 2025.06.26 12:37

- Workshops and Awareness Programs (23rd July 2025): ICAR-IISS in collaboration with IIED conducted a Voluntary Carbon Standard (VCS) project development workshop at IISS, Bhopal. It brought together farmers, project developers, NGOs, and policy practitioners. More than 50 farmers participated, gaining awareness on sustainable practices and carbon markets.

- National Workshop (23rd September 2025): A high-level platform was created to connect project developers, industries, NGOs, and government agencies under India's Carbon Credit Trading Scheme (CCTS). The event discussed project financing, MRV (Monitoring, Reporting, Verification), and future collaboration mechanisms.

- Community-Level Outreach in Villages: In Borkhedi, outreach activities focused on vermicomposting demonstrations, showcasing agricultural waste recycling, and motivating farmers to adopt residue management alternatives.

3. Training of Farmers

Training sessions have targeted both theoretical and practical aspects of sustainable agriculture:

- Technical Training: Farmers received guidance on soil fertility management, crop rotation, integrated nutrient management, residue recycling, irrigation efficiency, and agroforestry.

Vermibed installation in Farmers field for vermicompost production

- Carbon Farming & Market Opportunities: introduced farmers to carbon markets, explaining participation mechanisms, contracts, rights, and incentive structures.
- Hands-on Demonstrations: Field-based activities included vermicomposting practices and soil sample collection methods, enabling farmers to gain confidence in adopting and monitoring sustainable techniques.

4. Baseline Farmer Survey

A baseline survey is in progress in the three pilot villages (Borkhedi, Dubri, and Khokharia) to capture farmers' current practices, resource use, and attitudes toward sustainable agriculture.

- Digital App “Sarveshan”: To improve efficiency, transparency, and traceability, a custom digital App (Sarveshan) (<http://65.0.95.174:8080/appDownload.html>) was developed and deployed. The App enabled field staff to record farmer-level data directly on handheld devices, reducing errors and ensuring real-time data synchronization.

English ▾

Welcome to **Sarvekshan**

Start Survey

कृषि एवं किसान
कर्त्त्याण मंत्रालय
MINISTRY OF
**AGRICULTURE AND
FARMERS WELFARE**
सर्वमेव वर्यते

भारतीय अनुप-भारतीय मृदा विज्ञान संस्थान
ICAR-INDIAN INSTITUTE OF SOIL SCIENCE

Home

About

Farmer Profile

Name *

Age *

Mobile Number *

Gender

Village Name *

District *

Educational Status

Occupational Status

Home

Next

Farm Details

Khasra Number

Total Land Size (acres)

Land Tenure Type

Area under Kharif crops (acres)

Area under Rabi crops (acres)

Are legume crops included in rotation?

Type of Farming

Primary Sources of Household Income

Major Crops Grown

Previous

Next

Page 9 of 9

Neighbours

Monthly

Relatives

Weekly

University Scientists

Weekly

Carbon Credits and Knowledge Sources

Have you heard of Carbon Credits?

Willingness for Carbon Credits (if heard)

Sources of Knowledge

NGOs

Photo Status

No Photo

Location Status

No Location

Capture Photo

- Survey Coverage: Using Sarveshan, the survey captured cropping patterns, fertilizer and water input use, residue management, tillage intensity, and household-level willingness to adopt low-emission and carbon-creditable practices. The Sarveshan App has greatly facilitated data integration and will serve as the basis for MRV protocols under Verra VCS (VM0042) and India's CCTS.

5. Soil Sample Collection

Soil sample collection has been undertaken across the three villages to establish baseline soil fertility and carbon stock:

- Samples were collected from representative farmer plots under existing management systems. Farmers were actively involved in the process to ensure transparency and capacity-building.

6. Key Achievements to Date

1. Mobilization: Project initiation and community engagement post-funding release.
2. Workshops: Local and national-level capacity-building workshops successfully organized.
3. Training: Over 100 farmers trained in sustainable practices and carbon project participation.
4. Digital App (Sarveshan): Deployment of App-based survey system for farmer baseline data collection.
5. Soil Sampling: Completion of soil sample collection from pilot villages for baseline carbon and fertility status.

7. Next Steps

- Complete laboratory analysis of baseline soil samples.
- Field experiments in participating farmers field from Rabi 2025: crop sowing and treatment imposition showcasing conservation agriculture, integrated nutrient management, and no-residue-burning practices
- Finalize MRV frameworks for carbon credit generation using survey and soil baseline data.
- Strengthen Farmer Producer Organizations (FPOs) to enable long-term participation in carbon markets.
- Scale up the Sarveshan App for continued monitoring and data collection throughout the project lifecycle.

Session 6:

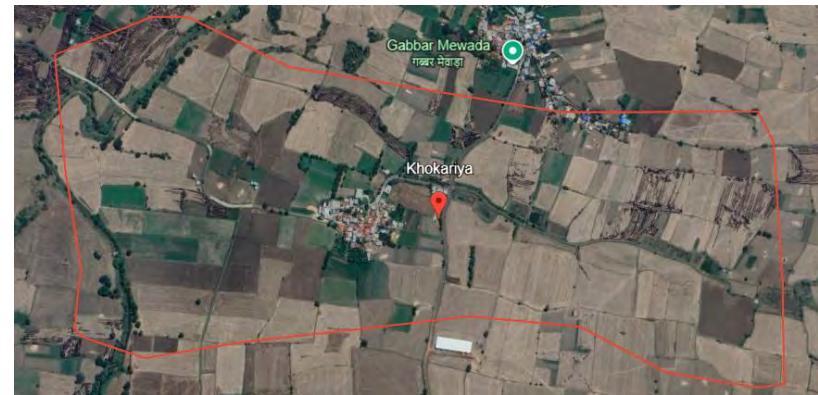
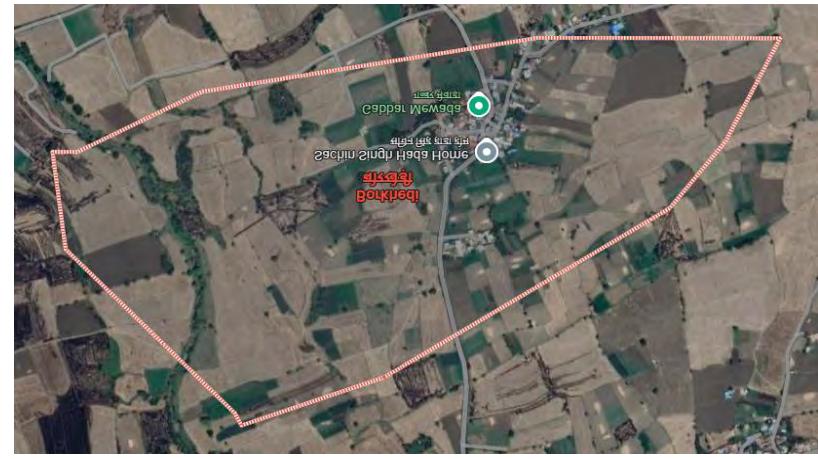
Advancing Carbon Farming through Technology and Investment

**Dr. Sangeeta Lenka
Principal Scientists**

ICAR-Indian Institute of Soil Science

Project title: Soil carbon sequestration and greenhouse gas reduction through sustainable agricultural practices for central India.

Standard: VM0042



VM0042 Standard overview

- **VM0042 – Methodology for Improved Agricultural Land Management (IALM):** This methodology is explicitly designed for agricultural land management: “quantifies the greenhouse gas (GHG) emission reductions and soil organic carbon (SOC) removals resulting from the adoption of improved agricultural land management practices”.

ICAR-IISS VCM Pilot Project— Overview

(Funded by Department of Agriculture & Farmers Welfare)

- ❖ Pilot sites: Borkhedi, Khokharia and Doodi villages, Phanda block Bhopal, Madhya Pradesh (~170 Acres and 90 farmers)
- ❖ Demonstrates carbon credits from sustainable farming through improved agricultural land management in soybean based cropping system
- ❖ Aligns with CCTS voluntary mechanism

Climate-Smart Practices in the Pilot villages

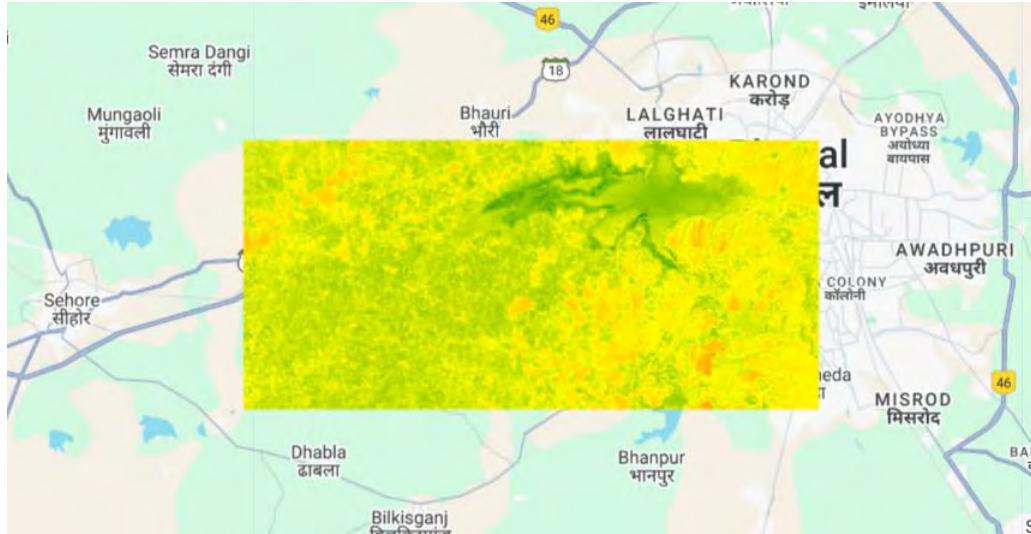
1. N_2O Emissions Reductions in Agricultural Crops through Nitrogen Fertilizer Rate Reduction (VM0022):
 - ✓ Substitution of 20% inorganic N with vermicompost/FYM/organic N
2. Adoption of Sustainable Agricultural Land Management (VM0017)
 - ✓ Reduced/No tillage
 - ✓ Crop residue management (in-situ/ex-situ residue decomposition/Mulching)
 - ✓ Incorporating crop residues back into the soil instead of burning them, enhancing soil organic carbon
 - ✓ Cover crop

GHG Reduction & Carbon Credit Potential

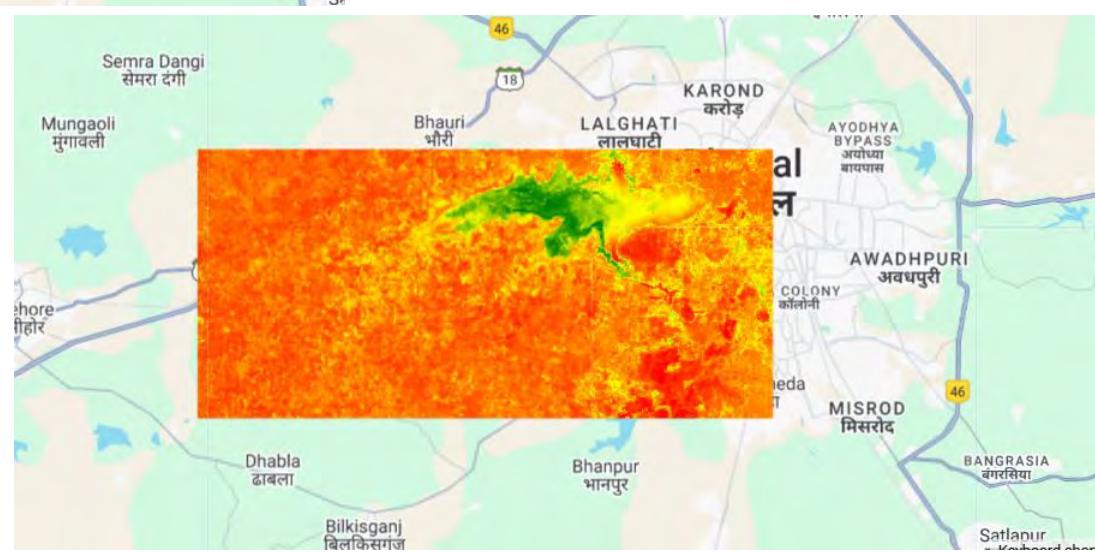
- N_2O : Reduced via less synthetic N
- CO_2 : Avoided by no burning & soil C sequestration
- CH_4 : Reduced via better residue & water management
- Estimated Carbon Credits: 2–3 tCO₂e/ha/yr (conservative figure) to 12-14 tCO₂e/ha/yr → ~40–60 credits/ha to 240 –280 tCO₂e/ha/yr over 20 years

Engaging Stakeholders and Local Communities

Capacity building of farmers



Workshops: Local and national-level capacity-building workshops


Remote sensing, IoT-based soil sensors, and GIS mapping enable accurate tracking of soil organic carbon, crop residue management, and land-use changes in real time.

Normalized burnt ratio of study area to establish additionality and Baseline

NBR (Burn Severity)

- Red: Burned Area (Low NBR)
- Yellow: Neutral
- Green: Healthy Vegetation (High NBR)

Digital Tools/App: “Sarveshan developed by ICAR-IISS)

Baseline data collection, verification, and reporting processes.

[About](#)

 Sarvekshan
Version: 1.0.0

Project Information
This application is being developed as part of the VCM Pilot project titled:
Soil Carbon Sequestration and Greenhouse Gas Reduction through Sustainable Agricultural Practices for Central India

Key Personnel
Project Investigator (PI):
Dr. Sangeeta Lenka

About the App
This application is designed to facilitate field data collection for the aforementioned project. It enables surveyors to gather essential information from farmers regarding crop types, farming practices, and resource management. The data collected is vital for research, policy development, and enhancing agricultural support services in Central India.

 Welcome to
Sarvekshan

[Start Survey](#)

English
Hindi

Page 1 of 9

Farmer Profile

Name *

Age *

Mobile Number *

Gender

Village Name *

District *

Educational Status

Occupational Status

[Home](#) [About](#) [Next](#)

भारतीय मूदा विज्ञान संस्थान
ICAR-INDIAN INSTITUTE OF SOIL SCIENCE

Soil sample collection: Georeferenced

(to establish baseline soil fertility and carbon stock)

GPS Map Camera

Borkhedi, Madhya Pradesh, India

 662r+3wf, Borkhedi, Madhya Pradesh 462044, India
Lat 23.199442° Long 77.241156°

Monday, 13/10/2025 11:47 AM GMT +05:30

GPS Map Camera

Borkhedi, Madhya Pradesh, India

 662r+3wf, Borkhedi, Madhya Pradesh 462044, India
Lat 23.19943° Long 77.241165°
Monday, 13/10/2025 11:47 AM GMT +05:30

Monitoring, Reporting & Verification (MRV)

- ✓ Baseline via historical data/control plots
- ✓ Monitor fertilizer use, residue handling, SOC levels
- ✓ Soil organic carbon monitoring through **direct sampling, measurement and modelling**
- ✓ Verification by independent auditors
- ✓ Transparent data for credit issuance

Project impact from GHG Reduction & Carbon Credit Potential

- N_2O : Reduced via less synthetic N
- CO_2 : Avoided by no burning & soil C sequestration
- CH_4 : Reduced via better residue & water management
- Estimated Carbon Credits: 2–3 tCO₂e/ha/yr (conservative figure) to 12-14 tCO₂e/ha/yr → ~40–60 credits/ha to 240 –280 tCO₂e/ha/yr over 20 years

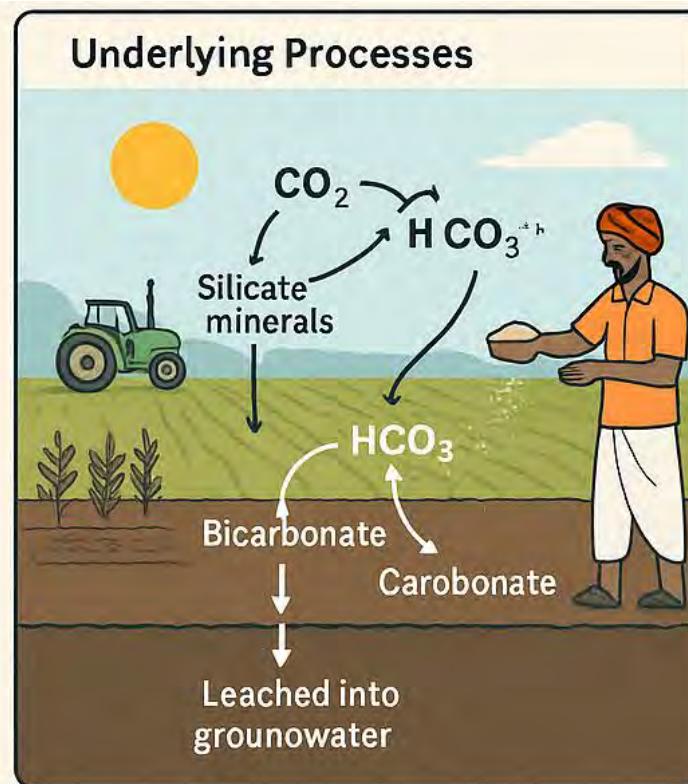
Project impacts: Co-Benefits to soil and communities

1. Soil Health: Higher SOC, nutrient retention
2. Soil health card
3. Farmer Income: Lower fertilizer costs, carbon revenue
4. Environment: Cleaner air (no burning), water quality
5. Biodiversity: Improved soil biota & farm ecosystems

Infrastructure Facilities Needed in Village to religiously follow and implement VM0042

Long-term **financial support** for consistent and continuous support

- ✓ Larger capacity vermicompost/FYM production units,
- ✓ Machinery banks for residue/tillage management (**Super seeder/rota Mulcher/Happy seeder** etc.),
- ✓ Strong FPO-led monitoring system,
- ✓ Digital MRV: Monitoring & Recordkeeping
- ✓ Scaling Up Implementation and Market Integration


Scaling Up & Industry Engagement

- Scalable across India's 120M ha cropland
- Policy integration with CCTS framework
- Industry can buy credits & support farmers also help create infrastructure facilities
- Multi-win: Climate, rural livelihoods, resilience

Implementation Challenges

1. Majority of Farmers are small and marginal with limited literacy, convincing them, capacity building
2. Clear land titles
3. Land Use land cover (LULUC) analysis need to be done for 10 years that adds significant cost to the project
4. Lengthy registration and issuance process: Farmers frequently ask question when do we get the benefits? After how many years and for How many years?
5. Benefit sharing protocol
6. Cost of maintaining data records, log books and monitoring
7. Retaining farmers to continue practice for long period of time
8. Better prices for produce from sustainable practices

Enhanced Rock Weathering (Potentials for carbon credits in Agricultural Soils)

Implications for Carbon Credits

- CO₂ removal and soil health
- Scale of arable land in India
- Additional income for farmers

$\sim 0.5 - 2$
t CO₂ ha⁻¹ yr⁻¹

Opportunities

- Availability of silicate rock feedstock
- MRV

Key Enabling Factors

- MRV system
- Government
- Incentives

Challenges & Caveats

- Quantification uncertainties
- Supply chain emissions
- Agronomic variability

Suggestions for Research & Policy Action

- Field trials
- Development
- Methodology
- Support farmer adoption

Soil and Agronomic Co-Benefits

- Soil fertility improvement
Replenish nutrients soil - mitigation
- Improved resilience
- Increase crop productivity

**ICAR-IISS &
Core CarbonX**

Linking Sustainable Agriculture, ERW, soil health and Climate Goals

A Roadmap for Soil Carbon to Climate Goals

Sustainable Agricultural Land Management

Boost soil organic matter

Enhanced Rock Weathering

Increase soil carbon storage

Climate Goals

Reduce greenhouse gas emissions

Quality Carbon Credits

Generate certified offsets

Carbro1 Cerifit

Generate certified offsets

