अखिल भारतीय समन्वित अनुसंधान परियोजना (मृदा परीक्षण और फसल अनुक्रिया) AICRP on Soil Test Crop Response Indian Institute of Soil Science (Indian Council of Agricultural Research) Nabibagh, Berasia Road, Bhopal – 462 038 ### Brief background of the project and mandate The major challenges in 21st century are food security, environmental quality and soil health. Besides, shrinking land holdings and increasing cost of inputs in India merit adoption of scientific use of plant nutrient for higher crop productivity. The soil fertility and fertilizer use project initiated in 1953 following a study by Stewart in 1947 which was the first systematic attempt in India to relate the knowledge of the soils to the judicious use of chemical fertilizers. The soil testing programme was started in India during the year 1955-56 with the setting up of 16 soil testing laboratories under the Indo-US Operational Agreement for "Determination of Soil Fertility and Fertilizer Use". In 1965, five of the existing laboratories were strengthened and nine new laboratories were established to serve the Intensive Agricultural District Programme (IADP) in selected districts. Muhr and coworker describe sets of critical values that characterized the estimates as low, medium or high in a monograph on soil testing in India in 1965. Background research for the choice of critical values consisted of a few pot culture and field experiments with paddy and wheat, carried out in the Division of Soil Science & Agricultural Chemistry at Indian Agricultural Research Institute, New Delhi. Taking a simplistic view of the situation, the differences among soil groups in the range of properties, which influence the susceptibility to absorption by plants of native and applied nutrients, were ignored. The generalized recommendations of fertilizer use developed for the soil testing laboratory area were thought applicable to the medium category of soil testing estimates with an arbitrary adjustment (decrease or increase by 25-50 per cent) for high and low categories of soil test estimates. The ICAR project on soil test crop response correlation has used the multiple regression approach to develop relationship between crop yield on the one hand, and soil test estimates and fertilizer inputs, on the other. Nutrient supplying power of soils, crop responses to added nutrients and amendment needs can safely be assessed through sound soil testing programme. Soil test calibration that is intended to establish a relationship between the levels of soil nutrients determined in the laboratory and crop response to fertilizers in the field permits balanced fertilization through right kind and amount of fertilizers as suggested by Ramamoorthy and Velayutham in 1971. In 2005, the conclusion of a collaborative project with IASRI, New Delhi and recommendations of QRT suggested to adopt a new design for STCR experiments, i.e. response surface design. Mandate: Proposed mandate is "To provide scientific recommendations and guidelines for soil fertility management vis-à-vis sustainable crop production". Growing tTest crop in different fertility gradient created under field condition ## **Objectives** The original objectives of the STCR project were - 1. To develop relationships between soil test values and crop response to fertilizers, in order to provide a calibration for fertilizer recommendation based on soil testing. - 2. To obtain a basis for making fertilizer recommendations for targeted yields. - 3. To evaluate various soil test methods for their suitability under field conditions. During the XI Plan, the following objectives were added. - 1. To evaluate the joint use of chemical fertilizers and organic manures for enhanced nutrient use efficiency. - 2. To derive a basis for making fertilizer recommendations for a whole cropping sequence based on initial soil test values. ### **Centres** | S.No. | Name of the center Date of start | | | | | |--------------|----------------------------------|------------|--|--|--| | Main Centres | | | | | | | 1 | ANGRAU, Hyderabad | 01.04.1967 | | | | | 2 | BCKVV, Kalyani | 25.03.1968 | | | | | 3 | CRIJAF, Barrackpore | 27.02.1971 | | | | | 4 | CSK HPKVV, Palampur | 01.07.1970 | | | | | 5 | CCSHAU, Hisar | 01.04.1967 | | | | | 6 | GBPUA&T, Pantnagar | 01.04.1970 | | | | | 7 | IARI, New Delhi | 01.05.1967 | | | | | 8 | IGKVV, Raipur | 01.04.1981 | | | | | 9 | JNKVV, Jabalpur | 01.04.1967 | | | | | 10 | KAU, Vellanikkara | 01.11.1996 | | | | | 11 | MPKVV, Rahuri | 28.10.1970 | | | | | 12 | OUAT, Bhubaneswar | 01.09.1996 | | | | | 13 | PAU, Ludhiana | 01.04.1967 | | | | | 14 | RAU, Bikaner | 01.09.1996 | | | | | 15 | RAU, Pusa | 01.12.1967 | | | | | 16 | TNAU, Coimbatore | 01.04.1967 | | | | | 17 | UAS, Bangalore | 01.10.1970 | | | | | Volunta | ary Centres started during 2010-11 | |---------|------------------------------------| | 18 | PJNCARI, Pondicherry | | 19 | JAU, Junagarh, Gujarat | |----|---| | 20 | BHU, Varanasi | | 21 | AAU, Jorhat, Assam | | 22 | SKUAT, Srinagar | | 23 | BAU, Ranchi, Jharkhand | | 24 | ICAR Research Complex for Northeast (NEH) Region, | | | Manipur centre | #### **Achievements** The salient achievements are summarized below. # Development of Target Yield Equation Liebig's law of minimum states that the growth of plants is limited by the plant nutrient element present in the smallest amount, all others being in adequate quantities. From this, it follows that a given amount of a soil nutrient is sufficient for any one yield of a given percentage nutrient composition. Taking a cue from Truog regarding the basis for fertilizer application for targeted yields, Ramamoorthy and coworkers in 1967 established the theoretical basis and experimental proof for the fact that Liebig's law of the minimum operates equally well for N, P and K. Among the various methods of fertilizer recommendation, the one based on yield targeting is unique in the sense that this method not only indicates soil test based fertilizer dose but also the level of yield the farmer can hope to achieve if good agronomic practices are followed in raising the crop. The essential basic data required for formulating fertilizer recommendation for targeted yield are (i) nutrient requirement in kg q⁻¹ of produce, grain or other economic produce (ii) the per cent contribution from the soil available nutrients (iii) the per cent contribution from the applied fertilizer nutrients. The above mentioned three parameters are calculated as follows: ## **Nutrient Requirement of N, P and K for Grain Production:** kg of nutrient/q of grain = $\frac{\text{Total uptake of nutrient (kg)}}{\text{Grain yield (q)}}$ ### Contribution of nutrient from soil = Total uptake in control plot (kg per ha) ×100 Soil test values of nutrient in control plot (kg per ha) ### Contribution of nutrient from fertilizer: Contribution from fertilizer (CF) = Total uptake of nutrients in treated plots – (Soil test value of nutrients in fertilizer treated plots × CS) % Contribution from Fertilizer = $$\frac{CF}{Fertilizer \, dose \, (kgperhe)} \times 100$$ ### **Calculation of fertilizer dose:** The above basic data are transformed into workable adjustment equation as follows: Fertilizer dose = $$\frac{\text{Nutrient requirement in kg per ha of grain}}{96 \text{ CF}} \times 100 \times \text{T} - \frac{\% \text{ CS}}{\% \text{ CF}} \times \text{soil test value}$$ = a constant \times yield target (q/ha) – b constant \times soil test value (kg/ha) Ramamoorthy and coworkers in 1967 have refined the procedure of fertilizer prescription as given by Truog in 1960 and later extended to different crops in different soils (Ramamoorthy *et al* 1975; Randhawa and Velayutham 1982). Targeted yield concept strikes a balance between 'fertilizing the crop' and 'fertilizing the soil'. The procedure provides a scientific basis for balanced fertilization and balance between applied nutrients and soil available nutrients. In the targeted yield approach, it is assumed that there is a linear relationship between grain yield and nutrient uptake by the crop, and for obtaining a particular yield, a definite amount of nutrients are taken up by the plant. Once this requirement is known for a given yield level, the fertilizer needed can be estimated taking into consideration the contribution from soil available nutrients. Different centres of AICRP on STCR developed fertilizer prescription equations for different crops which are given below along with the applicable districts. | Andhra Pradesh | | | | | |------------------------|--------------------------------|--|---------------------------|---| | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Rice (Mashuri) | Black soil
(Vertisols) | FN =3.79T-0.50 SN
FP ₂ O ₅ =3.19T-3.17 SP
FK ₂ O=1.60T-0.19 SK | 50-55 | Guntur, West Godavari, Ongole | | Rice (Pothana) | Inceptisols
(Sandy Loam) | FN =3.78T-0.44 SN
FP ₂ O ₅ =1.96T-2.13 SP
FK ₂ O=2.96T-0.36 SK | 50-60 | Karimnagar, Khammam, Nizamabad, Adilabad | | Rice (MTU-2067) | Alluvial | FN =2.30T-0.32 SN
$FP_2O_5=1.91T-1.90$ SP
$FK_2O=2.27T-0.27$ SK | 50-60 | East Godavari, West Godavari and Krishna | | Rice (MTU-5182) | Black soil | FN =3.35T-0.33 SN
$FP_2O_5=2.52T-4.53$ SP
$FK_2O=1.24T-0.12$ SK | 60-70 | Anantapur, Cuddapah and Kurnool | | Rice (NLR-9672) | Sandy clay loam
(Alluvial) | FN =3.47T-0.37 SN
$FP_2O_5=2.53T-2.12$ SP
$FK_2O=1.89T-0.20$ SK | 45-50 | Nellore, Ongole, Cuddapah and Chittoor | | Rice
(Tellahamsa) | Light black soil (Sandy clay) | FN =4.20T-0.55 SN
$FP_2O_5=2.70T-2.67$ SP
$FK_2O=2.22T-0.21$ SK | 50-55 | Ranga Reddy, Mahaboobnagar,
Sanga Reddy and Nalgonda | | Rice (Pothana) | Black soil
(Vertisol) | FN
=4.75T-0.75 SN
$FP_2O_5=2.75T-4.20$ SP
$FK_2O=1.99T-0.15$ SK | 50-55 | Warangal, Karimnagar, Nizamabad and Adilabad | | Rice
(Tellahamsa) | Black soil | FN =2.83T-0.32 SN
FP_2O_5 =2.29T-2.98 SP
FK_2O =1.34T-0.17 SK | 50-55 | Anantapur, Cuddapah and Kurnool | | Rice (NLR 33057) | Alluvial soils
(Sandy loam) | FN = $4.53T-0.51$ SN
FP ₂ O ₅ = $2.12T-2.06$ SP
FK ₂ O= $2.35T-0.21$ SK | 45-50 | Nellore, Chittoor, Cuddapah and Prakasam | | Rice (IR -64) | Alluvial | FN =2.65T-0.28 SN
FP_2O_5 =2.00T-2.16 SP
FK_2O =1.96T-0.21 SK | 70-80 | East and West Godavari and Krishna | | Rice
(Tellahamsa) | Chalka soils | FN =3.23T-0.26 SN
$FP_2O_5=1.51T-1.80$ SP
$FK_2O=1.65T-0.16$ SK | 70-80 | Ranga Reddy, Nalgonda,
Mahaboobnagar and Medak | | Rice
(Tellahamsa) | Light Black soil (Sandy clay) | FN =3.58T-0.57 SN
$FP_2O_5=1.71T-2.46$ SP
$FK_2O=1.48T-0.16$ SK | 60-70 | Ranga Reddy, Nalgonda,
Mahoobnagar, Medak | | Maize (DHM-
105) | Chalka soils | FN =4.19T-0.40 SN
$FP_2O_5=1.50T-1.55$ SP
$FK_2O=1.49T-0.16S$ K | 40-50 | Karimnagar,Warangal,
Nizamabad and Medak | | Maize (DHM-
101) | Chalka soils | FN = $4.00T-0.49$ SN
FP ₂ O ₅ = $2.15T-2.58$ SP
FK ₂ O= $2.58T-0.30$ SK | 40-50 | Ranga Reddy and Mahaboobnagar and Medak | | Maize (Local cultivar) | Alfisol (Sandy
Loam) | FN =18.76T-0.30 SN
$FP_2O_5=3.29T-0.78$ SP
$FK_2O=3.47T-0.02$ SK | 8-12 | Ranga Reddy Mahaboobnagar and Medak | | Rainfed Cotton | Vertisol | FN =15.63T-0.70 SN
$FP_2O_5=8.96T-2.15$ SP
$FK_2O=13.41T-0.304$ SK | 10-12 | Kurnool | | Sugarcane (Co-419) | Black soil | FN =5.4T-1.25 SN
FP ₂ O ₅ =1.8T-4.73 SP | (t/ha) 80-
100 | Nizamabad | |-----------------------------------|-----------------------------|---|------------------------------|---| | Mustard | Alfisol (Sandy | FK ₂ O=1.7T-0.33 SK
FN =22.21T-0.17 SN | 8-10 | Ranga Reddy | | (Pusa Jaikishan) | loam) | FP ₂ O ₅ =7.90T-0.25 SP
FK ₂ O=6.38T-0.06 SK | 0-10 | Tranga Fleudy | | Sunflower
(MSFH-17) | Vertisol | FN =8.23T-0.46 SN
FP ₂ O ₅ =8.91T-4.24 SP
FK ₂ O=3.80T-0.10 SK | 15-18 | Yemmiganur, Cuddapah and
Anantapur | | Sunflower
(Mahyco-8) | Sandy clay loam | FN=11.44T-0.41SN
FP ₂ O ₅ =7.49T-2.10 SP
FK ₂ O=4.93T-0.18 SK | 15-18 | Nizamabad ,Adilabad,
Karimmagar and Warangal | | Sunflower
(Manjera) | Vertisol | FN =9.04T-0.75 SN
FP ₂ O ₅ =3.74 T-0.85 SP
FK ₂ O=5.76T-0.50 SK | 20-25 | Mahaboobnagar | | Castor (Kranthi) | Inceptisol | FN =8.35T-0.40 SN
FP ₂ O ₅ =7.17 T-2.88 SP
FK ₂ O=3.02T-0.10SK | 12-15 | Mahaboobnagar and Nalgonda | | Pigeonpea
(LRG-30) | Vertisol | FN=4.71T-0.21SN
FP ₂ O ₅ =5.83 T-2.93SP
FK ₂ O=6.96T-0.31SK | 15-20 | Mahabubnagar | | Chickpea
(Annegiri) | Vertisol | FN=5.03T-0.27SN
FP ₂ O ₅ =9.71T-1.82SP
FK ₂ O=6.23T-0.22SK | 15-20 | Kurnool | | Cabbage
(Golden Acre) | Alfisol (Sandy loam) | FN=1.574T-0.626SN
FP ₂ O ₅ =0.606T-0.915SP
FK ₂ O=0.486T-0.095SK | 150-200 | Ranga Reddy | | Turmeric (PCT - 13) | Incepisol (Sandy clay loam) | FN=14.31T-1.73SN
FP ₂ O ₅ =4.01 T-1.66SP
FK ₂ O=12.22T-1.17 SK | 30-40 | Nizamabad, Adilabad and
Karimnagar | | Turmeric
(Mydukur) | Alfisol | FN=13.62T-1.66SN
FP ₂ O ₅ =3.74T-1.48SP
FK ₂ O=9.29T-0.68 SK | 30-40 | Kadapa | | Maharashtra | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Sugarcane
(Adsali- Co
7219) | Typic Haplusterts | FN=4.39T-1.56 SN
FP ₂ O ₅ =1.62T-4.56 SP
FK ₂ O=1.86T-0.37SK | 175-200 t
ha ¹ | Ahmednagar,Pune,Satara, Sangil,Kolhapur,Nasik, Dhule, Latur, Solapur, Parbhani, Osmanabad and Nanded | | Wheat (HD-
2189) | Vertic
Haplusterts | FN=7.54T-0.74 SN
FP ₂ O ₅ =1.90T-2.88 SP
FK ₂ O=2.49T-0.22SK | 40-50 | Ahmednagar,Pune, Jalgaon ,Nasik,Aurangabad, Pune, Jalgaon, Nasik, Aurangabad, Parbhani, Jalna, Akola Buldhana, Wardha, Yawatmal, Stara, Sangli ,Kolhapur, Dhule and Nandurbar | | Upiand Paddy
Rabi (R-24) | Typic Haplusterts | FN=5.25T-0.54 SN
FP ₂ O ₅ =2.19T-0.83 SP | 30-40 | Kolhapur,Sangli
And Satara | |--|----------------------|--|-------|---| | , , | | FK ₂ O=2.37T-0.05SK | | | | Transplanted paddy (Indrayani) | Typic
Ustorthents | FN=5.20T-0.34SN
FP ₂ O ₅ =9.40T-13.66 SP
FK ₂ O=2.73T-0.16SK | 40-45 | Nasik, Pune, Nandurbar, Gadchiroli and Kolhapur | | Pearl millet
Kharif (Saburi-
RHRBH-8609) | Haplusterts | FN=3.31T-0.38SN
FP ₂ O ₅ =3.38T-4.11 SP
FK ₂ O=1.65T-0.06SK | 30-35 | Dhule, Nashik, Ahmednagar, Beed
, Aurangabad, Akola Buldhana,
Wardha, Yawatmal, Stara, Pune
and Solapur | | Sorghum Kharif
(CSH-9) | Vertic
Ustropepts | FN=4.58T-0.96SN
FP ₂ O ₅ =2.21T-6.94 SP
FK ₂ O=3.34T-0.22SK | 40-45 | Jalgaon, Dhule, Nandurbar,
Satara, Kolhapur, Sangil, Akola,
Parbhani, Buldhana Aurangabad,
Wardha, Yeotmal and Pune | | Sorghum Rabi
(CSH-8 R) | Typic
Haplusterts | FN=4.7T-0.77SN
FP ₂ O ₅ =2.00T-4.29 SP
FK ₂ O=3.35T-0.33SK | 50-60 | Jalgaon, Akola, Aurangabad,
Jalna, Osmanabad, Parbhani,
Latur Aurangabad, Buldhana,
Solapur, Yeotmal, Satara and
Sangli | | Finger milled
Nagli (Nagil
RAU-8) | Typic
Haplusterts | FN=4.42T-0.225SN
FP ₂ O ₅ =2.97T-1.32 SP
FK ₂ O=1.21T-0.024SK | 12-18 | Nasik, Nandurbar, Kolhapur, Pune, Gadchiroil and Bhandara | | Fodder Maize
Summer (African
tall) | Typic
Haplusterts | FN=6.49T-0.56SN
FP ₂ O ₅ =1.51T-0.73 SP
FK ₂ O=2.45T-0.13SK | 40-50 | Kolhapur, Satara, Sangli Pune,
Ahmednagar, Nasik and Solapur | | Cotton (RHR-5-
253) | Typic
Haplusterts | FN=13.1T-0.75SN
FP ₂ O ₅ =6.83T-2.84 SP
FK ₂ O=8.57T-0.18SK | 20-24 | Jalgaon, Akola Buldana,
Ameavati, Nanded Latur, Washim
Pune, Parbhani, Yeotmal
Ahmednagar, Satara Sangli
Solapur,and Kolhapur | | Groundnut
(Phule Pragati
JL-24) | Typic
Haplusterts | FN=4.16T-0.37SN
FP ₂ O ₅ =4.96T-4.36 SP
FK ₂ O=3.14T-0.16SK | 20-25 | Jalgaon, Dhule,Akola ,Latur,
Aurangabad,Jalna Parbhani
Buldhana, Nanded Pune,Wardha,
Yeotmal Satara Sangli, Kolhapur
and Ahmednagar, | | Groundnut
(Summer SB-IX) | Typic
Haplusterts | FN=4.18T-0.40SN
FP ₂ O ₅ =8.23T-6.15 SP
FK ₂ O=3.22T-0.10SK | 25-30 | Ahmednagar, Pune, Satara, Sangil, Kolhapur, Nasik, Jalgaon, Thane, Raigad, Ratnagiri, Sindhudurg, Wardha, Nagpur, Buldhana, Gadchiroli and Chandrapur | | Soybean (JS-
335) | Typic
Haplusterts | FN=6.86T-0.68SN
FP ₂ O ₅ =6.17T-4.46 SP
FK ₂ O=3.96T-0.13SK | 25 | Ahmednagar, Nasik Pune, Satara, Sangil, Kolhapur, Solapur and Dhule | | Sunflower
(SS-56) | Typic
Haplusterts | FN=13.94T-0.61SN
FP ₂ O ₅ =7.18T-6.82 SP
FK ₂ O=4.82T-0.12SK | 16-18 | Ahmednagar Dhule,
Nandurbar Jalna, Aurangabad ,
Nanded, Parbhani, Satara,
Sangil,and Pune | | Pigeonpea | Typic | FN=5.61T-0.54SN | 16-20 | Jalgaon,Ahmednagar,Aurangaba | |------------------------------------|----------------------|---|--------------------------|--| | (ICPL-87) | Haplusterts | FP ₂ O ₅ =5.72T-4.73 SP
FK ₂ O=6.33T-0.17SK | | d Jalna, Parbhani, Pune Nanded,
Akola,Satara,Sangil,and
Kolhapur | | Green gram (S-8) | Typic
Haplusterts | FN=4.56T-0.18SN
FP ₂ O ₅ =12.51T-7.61 SP
FK ₂ O=3.53T-0.05SK | 10-12 | Jalgaon, Akola Buldhana,
Amravati,Nanded Wardha,
Yeotmal, Satara, Sangil,and
Dhule, | | Chickpea
(Vishal) | Typic
Haplusterts | FN=5.25T-0.46SN
FP ₂ O ₅ =3.87T-2.77 SP
FK ₂ O=1.29T-0.04SK | 20-25 | AmravatiJalgaon,Pune Nasik
Nanded Aurangabad, Beed,Jalna
Akola, Buldhana,Wardha,
Yeotmal, Satara,Sangil,and
Kolhapur | | Okra (Arka
anamika) | Typic
Haplusterts | FN=16.86T-0.45SN
FP ₂ O ₅ =10.31T-2.36 SP
FK ₂ O=11.60T-0.15SK | 12-15 t ha ⁻¹ | Ahmednagar, Nasik Pune, Satara, Sangil, Kolhapur, Solapur and Dhule | | Brinjal (Krishna) | Typic
Haplustert | FN=4.82T-0.53SN
FP ₂ O ₅ =3.14T-7.32 SP
FK ₂ O=3.21T-0.13SK | 50-60 t ha ⁻¹ | Ahmednagar,Nasik Pune, Satara,
Sangil,Kolhapur,
Solapur and Dhule | | Cabbage
(Gloden acre) | Typic
Haplusterts | FN=8.28T-0.21SN
FP ₂ O ₅ =4.72T-2.34 SP
FK ₂ O=6.68T-0.19SK | 30-40 t ha ⁻¹ | Ahmednagar, Nasik Pune, Satara,
Sangil, Kolhapur,
Solapur and Dhule | | Cauliflower
(Namdhari
No.90) | Typic
Haplusterts | FN=6.83T-0.35SN
FP ₂ O ₅ =4.25T-2.21 SP
FK ₂ O=3.90T-0.08SK | 25 t ha ⁻¹ | Ahmednagar, Nasik, Pune,
Satara, Sangil,Kolhapur,
Solapur and Dhule | | Potato (Khufri
Jyoti) | Typic
Ustorthent | FN=1.549T-0.40SN
FP ₂ O ₅ =0.906T-5.53 SP
FK ₂ O=1.315T-0.17SK | 175 t ha ⁻¹ | Pune Ahmednagar,Aurangabad and Nasik | | Tomato
(Dhanshree) | Typic
Ustorthent | FN =5.33T-0.46 SN
FP ₂ O ₅ =3.88T-4.16 SP
FK ₂ O=5.16T-0.25 SK | 30 t ha ⁻¹ | Ahmednagar, Nasik Pune, Satara,
Sangil, Kolhapur,
Solapur and Dhule | | Turmeric
(Kharif-Salem) | Typic
Haplustert | FN=11.10T-1.78SN
FP ₂ O ₅ =4.54T-7.55 SP
FK ₂ O=5.40T-0.545SK | 70 | Kolhapur, Sangil and Satara | | Chilli (Phule
Jyoti) | Typic
Haplustert | FN=50.23T-0.54SN
FP ₂ O ₅ =27.09T-3.17 SP
FK ₂ O=36.48T-0.30SK | 7 t ha ⁻¹ | Ahmednagar,Nasik Pune,
Satara,
Sangil,Kolhapur,
Solapur and Dhule | | Onion (N-2-4-1) | Typic
Haplusterts | FN=5.40T-0.54SN
FP ₂ O ₅ =4.00T-4.32 SP
FK ₂ O=3.10T-0.13SK | 25-30 | Nasik Ahmednagar, Pune, Satara
Dhule, Solapur Jalgaon
Aurangabad, Beed and Latur | | Himachal Prades | h | - | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | |---|--------------------------------|---|---------------------------|---| | Rice | Alfisol,
Entisol,Inceptisol | $\begin{array}{c} \text{FN=}5.46\text{T-}0.32\text{SN} \\ \text{FP}_2\text{O}_5 = 2.50\text{T-}2.67 \text{ SP} \\ \text{FK}_2\text{O} = 2.82\text{T-}0.68\text{SK} \\ \text{(Mid hills wet temperate zone)} \end{array}$ | 40 | Kangra, Kullu, and Shimla | | Rice | Alfsol,
Entisol,Inceptisol | FN=5.90T-0.43SN
FP ₂ O ₅ =3.22T-3.29 SP
FK ₂ O=3.14T-0.71SK
(Sub montane low hills
sub tropical zone) | 40 | Una, Bilaspur, Hamirpur and part of Kangra and Sirmaur | | Chhattisgarh | 0-11 | Durantintin Emilia | T | Applicable District | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Rice (Improved
dwarf R-269
Ruchi) | Inceptisol | FN=3.73T-0.55SN
FP ₂ O ₅ =1.45T-5.61 SP
FK ₂ O= SK 250 kg ha ⁻¹ | 40-60 | Raipur, Durg, Rajnandgaon,
Mahasamund, Dhamtari and
Bilaspur | | Rice IR-36 | Alfisol | FN=5.88T-0.88SN
FP ₂ O ₅ =107T-4.13 SP
FK ₂ O= SK250 kg ha ⁻¹ | 40-60 | Raipur Durg, , Rajnandgaon,
Mahasamund, Dhamtari and
Bilaspur | | Rice (R-269
Ruchi) | Vertisol | FN=4.95T-0.62SN
FP ₂ O ₅ =130T-2.56 SP
FK ₂ O= SK 250 kg ha ⁻¹ | 40-60 | Raipur Durg, , Rajnandgaon,
Mahasamund, Dhamtari and
Bilaspur | | Rice (Safari-17
Local Tall) | Vertisol | FN=3.97T-0.53SN
FP ₂ O ₅ =120T-2.69SP
FK ₂ O= SK 250 kg ha ⁻¹ | 35-55 | Raipur Durg, , Rajnandgaon,
Mahasamund, Dhamtari and
Bilaspur | | Rice
(Mahamaya) | Inceptisol | FN=4.82T-1.114SN
FP ₂ O ₅ =106.3T-2.79SP
FK ₂ O= SK 250 kg ha ⁻¹ | 40-60 | Raipur, Raigharh, Durg,
Rajnandgaon, Mahasamund,
Dhamtari, Bilaspur and korba | | Rice
(Mahamaya) | Vertisol | FN=3.64T-0.87SN
FP ₂ O ₅ =103.8T-2.85SP
FK ₂ O=SK250 kg ha ⁻¹ | 40-60 | Raipur,Raigharh,Durg,
Rajnandgaon, Mahasamund,
Dhamtari and Bilaspur | | Rice with FYM (Mahamaya) | Inceptisol | FN=3.88T-0.578SN
FP ₂ O ₅ =129T-2.24SP
FK ₂ O=SK250 kg ha ⁻¹ | 40-60 | Raipur Durg, , Rajnandgaon,
Mahasamund, Dhamtari and
Bilaspur | | Rice without
FYM
(Mahamaya) | Inceptisol | FN=3.93T-0.489SN
FP ₂ O ₅ =110T-2.11SP
FK ₂ O=SK 250 kg ha ⁻¹ | 40-60 | Raipur Durg, , Rajnandgaon,
Mahasamund, Dhamtari and
Bilaspur | | Wheat (Swati) | Inceptisol | FN=6.99T-0.41SN
FP ₂ O ₅ =115T-3.45SP
FK ₂ O=SK 250 kg ha ⁻¹ | 15-25 | Raipur Durg, Mahasamund
Bilaspur, , Raigarh Janjgir,
Dhamtari | |--------------------------|-----------------------------|--|---------------------------|--| | Maize (Pro-agro
4640) | Vertisol | FN=3.97T-0.465SN
FP ₂ O ₅ =358T-13.5SP
FK ₂ O= SK 250 kg ha ⁻¹ | 50-70 | Raipur , Rajnandgaon Kawardha Durg, | | Mustard (Pusa bold) | Vertisol | FN=9.18T-0.256SN
FP ₂ O ₅ =188T-2.79SP
FK ₂ O=SK 250 kg ha ⁻¹ | 12-20 | Raipur Durg,, Rajnandgaon
Bilaspur, and Kawardha | | Potato (JH-222) | Vertisol | FN=1.67T-0.36SN
FP ₂ O=0.54T-2.27 SP
FK ₂ O= SK 250 kg ha ⁻¹ | 120-200 | Raipur Durg,, Bilaspur, | | Okra (Parbhani) | Inceptisol | FN=1.99T-0.299SN
FP ₂ O=190T-3.31 SP
FK ₂ O= SK 250 kg ha ⁻¹ | 100-150 | Raipur Raigarh, Mahasamund,
Dhamtari and Bilaspur, | | Delhi and Uttar P | radesh | | 1 | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Rice | Typic Haplustept (Alluvial) | FN=4.93T-0.47SN
FP ₂ O ₅ =4.48T-7.82 SP
FK ₂ O=2.31T-0.21SK | 50-60 | Gautam Budhanagar, Ghaziabad
Bagpat, Meerut, Mujjafarnagar,
Saharanpur, Buland, Shahr,
Aligarh, Maha,Mayanagar, Etah,
Agra, Etawah, Mainpuri,
Shikohabad, Agra, Mathura,
Jhansi, Ferozabad, Jalaun | | Wheat | Typic Haplustept (Alluvial) | FN=5.31T-0.51SN
FP ₂ O ₅ =3.45T-5.55 SP
FK ₂ O=2.75T-0.32SK | 50-60 | Gautam Budhanagar, Ghaziabad
Bagpat, Meerut, Mujjafarnagar,
Saharanpur, Buland, Shahr,
Aligarh, Maha,Mayanagar, Etah,
Agra, Etawah, Mainpuri,
Shikohabad, Agra, Mathura,
Jhansi, Ferozabad, Jalaun | | Maize | Typic Haplustept (Alluvial) | FN=6.61T-0.52SN
FP ₂ O ₅ =4.77T-5.13 SP
FK ₂ O=2.75T-0.24SK | 30-40 | Gautam Budhanagar, Ghaziabad
Bagpat, Meerut, Mujjafarnagar,
Saharanpur, Buland, Shahr,
Aligarh, Maha,Mayanagar, Etah,
Agra, Etawah, Mainpuri,
Shikohabad, Agra, Mathura,
Jhansi, Ferozabad, Jalaun | | Barley | Typic Haplustept (Alluvial) | FN=3.69T-0.64SN
FP ₂ O ₅ =2.93T-5.24 SP
FK ₂ O=2.22T-0.31SK | 40-50 | Gautam Budhanagar, Ghaziabad
Bagpat, Meerut, Mujjafarnagar,
Saharanpur, Buland, Shahr, | | Pearlmillet | Typic Haplustept (Alluvial) | FN=6.97T-0.38SN
FP ₂ O ₅ =5.73T-4.81 SP
FK ₂ O=3.92T-0.28SK | 25-30 | Aligarh, Maha,Mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun Gautam Budhanagar, Ghaziabad Bagpat, Meerut, Mujjafarnagar, Saharanpur, Buland, Shahr, Aligarh, Maha,Mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun | |---------------|--|--|-----------------|--| | Mustard | Typic Haplustept (Alluvial) | FN=7.41T-0.44SN
FP ₂ O ₅ =6.22T-3.41 SP
FK ₂ O=6.21T-0.39SK | 20-25 | Gautam Budhanagar, Ghaziabad
Bagpat, Meerut, Mujjafarnagar,
Saharanpur, Buland, Shahr,
Aligarh, Maha,Mayanagar, Etah,
Agra, Etawah, Mainpuri,
Shikohabad, Agra, Mathura,
Jhansi, Ferozabad, Jalaun | | Soybean | Typic Haplustept (Alluvial) | FN=6.60T-0.35SN
FP ₂ O ₅ =6.05T-3.19 SP
FK ₂ O=3.86T-0.21SK | 20-25 | Gautam Budhanagar, Ghaziabad
Bagpat, Meerut, Mujjafarnagar,
Saharanpur, Buland, Shahr,
Aligarh, Maha,Mayanagar, Etah,
Agra, Etawah, Mainpuri,
Shikohabad, Agra, Mathura,
Jhansi, Ferozabad, Jalaun | | Bihar Wariatu | Soil | Prescription Equation | Toward | Applicable District | | Crop/Variety | 5011 | Prescribilion Equation | Target | Applicable District | | | | | Range
(q/ha) | | | Wheat | Young alluvium (Calcareous Soil) | FN =5.95T-0.43 SN
$FP_2O_5=3.03T-1.34SP$
$FK_2O=3.16T-0.73SK$
(with only inorganic | Range | East Champaran, Wast
Champaran, Siwan Saran
Sitamarhi, Shivhar, Muzaffarpur,
Vaishali , Samastipur, Gopalganj, | | Wheat | Young alluvium | FN =5.95T-0.43 SN
FP ₂ O ₅ =3.03T-1.34SP
FK ₂ O=3.16T-0.73SK | Range
(q/ha) | East Champaran, Wast
Champaran, Siwan Saran
Sitamarhi, Shivhar, Muzaffarpur, | | | Young alluvium (Calcareous Soil) Young alluvium | FN =5.95T-0.43 SN
FP ₂ O ₅ =3.03T-1.34SP
FK ₂ O=3.16T-0.73SK
(with only inorganic fertilizers: N,P&K)
FN =605T-0.03 SN
FP ₂ O ₅ =4.27T-3.39SP
FK ₂ O=10.02T-3.30SK
F Zn = 0.38T-7.14 S Zn
(with only inorganic | Range
(q/ha) | East Champaran, Wast Champaran, Siwan Saran Sitamarhi, Shivhar, Muzaffarpur, Vaishali , Samastipur, Gopalganj, Begusarai, Part of Khagaria East Champaran, Wast Champaran, Siwan Saran | | | | (with only inorganic fertilizers: N,P&K) | | | |--------------------|--|--|---------------------------|--| | Wheat | Old
Alluvium, Heavy
textured soil | FN =4.06T-0.23 SN
FP ₂ O ₅ =2.03T-1.46 SP
FK ₂ O=1.69T-0.16 SK
(with only inorganic
fertilizers: N,P&K) | 40-50 | Rohtas, Bhopur, Buxar, Bhabhua,
Arwal ,Patna, Nalanda, Nawadah
Jehanabad, Aurangabad and
Gaya | | Sugar Cane
main | Young Alluvium,
Calcareous | FN =0.236 T-0.27 SN
FP ₂ O ₅ =0.113T-1.59 SP
FK ₂ O=0.101T-0.25 SK | t/ha 75-100 | East Champaran, Wast
Champaran, Siwan Saran
Sitamarhi Shivhar, Muzaffarpur,
Vaishali, Samastipur, Gopalganj,
Begusarai, Part of Khagaria | | Sugarcane ratoon | Young Alluvium,
Calcareous Soil | FN =0.261 T-0.29 SN
FP ₂ O ₅ =0.120T-1.50 SP
FK ₂ O=0.108T-0.19 SK | t/ha 75-100 | East Champaran, Wast
Champaran, Siwan Saran
Sitamarhi Shivhar, Muzaffarpur,
Vaishali, Samastipur, Gopalganj,
Begusarai, Part of Khagaria | | Jharkhand | 0-:1 | Described Secretion | T | Annella de la Districa | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha)
 Applicable District | | Wheat | Red Loam Soil | FN =4.84 T-0.36 SN
FP ₂ O ₅ =2.94T-1.63 SP
FK ₂ O=2.01T-0.16 SK | 25-30 | Jharkhand state having red loam/laterite soil | | Tamil Nadu | l | | l | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Maize -CO-1 | Mixed black
(Perianaickenpala
yam series) | FN =4.60 T-0.55 SN
FP ₂ O ₅ =2.25T-1.80 SP
FK ₂ O=5.16T-0.49 SK | 50 | Coimbatore , Tiruchirappalli and Salem | | Ragi (CO 11) | Red-Sandy loam
(Somayanur
series) | FN =4.94 T-0.55 SN
FP ₂ O ₅ =1.36T-0.96 SP
FK ₂ O=4.20T-0.46 SK | 40 | Coimbatore , Tirupur, Dindigul
Madurai Namakkal Theni and
Salem | | Blackgram (ADT 3) | Mixed black calcareous(Perianacken palayamseries) | FN =10.84 T-0.39 SN
FP ₂ O ₅ =7.23T-1.00 SP
FK ₂ O=5.20T-0.04 SK | 9 | Coimbatore , Tiruppur,Salem and Trichy | | Gingelly (TMV 4) | Black
Alluvium(Adanur
series) | FN =13.07 T-0.46 SN
FP ₂ O ₅ =6.3T-1.79 SP
FK ₂ O=12.8T-0.47 SK | 10 | Thanjavur,Tiruvarur,
Nagapattinam, Trichy Karur, and
Cuddalore | | Chilli (CO 1) | Red-Sandy clay loam | FN =8.29 T-0.32 SN
FP ₂ O ₅ =7.13T-5.24 SP
FK ₂ O=5.86T-0.15 SK | 20 | Coimbatore , Tiruppur ,Erode
Salem, Dindigul Namakkal
Madurai ,Virudhunagar and | | | | | | Pudukottai | |---------------------------|--|---|---------------------------|---| | West Bengal | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Wheat(UP-262) | Inceptisol | FN =12.88 T-0.80 SN
FP ₂ O ₅ =2.15T-0.23 SP
FK ₂ O=4.65T-0.29 SK | 25-30 | Nadia, Burdwan and
Murshidabad | | Wheat (PBW-343) | Inceptisol | FN =3.03 T-18 SN
FP ₂ O ₅ =1.35T-0.23 SP
FK ₂ O=2.15T-0.29 SK
FN =12.88 T-0.80 SN
FP ₂ O ₅ =2.15T-0.23 SP
FK ₂ O=4.65T-0.29 SK | 45-50 | Nadia, Burdwan and
Murshidabad | | Haryana | | | | 1 | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Paddy
(PR 106) | Sierozem
(Inceptisols/Entis
ols) | FN =3.70T-1.10 SN
FP ₂ O ₅ =1.35T-2.66 SP | 65-75 | All districts of Haryana | | Wheat (WH542) | Sierozem
(Inceptisols/Entis
ols) | FN =5.65T-1.34 SN
FP ₂ O ₅ =1.91T-2.19 SP | 45-55 | All districts of Haryana | | Durum Wheat (WH896) | Sierozem
(Inceptisols/Entis
ols) | FN =6.08T-1.19 SN
FP ₂ O ₅ =2.58T-3.68 SP | 35-45 | All districts of Haryana | | Mazie (Vijay composite) | Sierozem
(Inceptisols/Entis
ols) | FN =4.93T-1.03 SN
FP ₂ O ₅ =1.95T-3.54 SP | 40-50 | All districts of Haryana | | Sorghum fodder
(HC 171 | Sierozem
(Inceptisols/Entis
ols) | FN =0.46T-1.27 SN
FP ₂ O ₅ =0.16T-3.59 SP | 400-600 | All districts of Haryana | | Oat fodder (HFO114) | Sierozem
(Inceptisols/Entis
ols) | FN =0.50T-1.09 SN
FP ₂ O ₅ =0.13T-1.50 SP | 400-500 | All districts of Haryana | | Cotton (H 777) | Sierozem
(Inceptisols/Entis
ols) | FN =10.91T-1.09 SN
FP ₂ O ₅ =3.02T-1.73 SP | 16-22 | All districts of Haryana | | Raya (RH 8113) | Sierozem
(Inceptisols/Entis
ols) | FN =9.76T-0.81 SN
FP ₂ O ₅ =4.12T-2.03 SP | 16-20 | Mohindergarh, Faridabad,
Mewat, Jhajjar Rewari, Bhiwani,
Hisar, Sirsa, Faridabad and Jind | | Orissa | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range | Applicable District | | | | | (q/ha) | | |--|--|--|---------------------------|--| | Rice (cv.Lalat) | Fine, mixed, hyperthermic Vertic Haplustept | FN =8.4 T-1.4 SN
FP ₂ O ₅ =5.0T-3.1 SP
FK ₂ O=6.6T-1.5 SK | 40-50 | Khurda, Puri, Nayagarh, Cuttack,
Dhenkanal, Sambalpur, Bargarh
Jharsududa and Sundargarh | | Bhindi Lady's
finger
(cv.BB.O.2) | Fine, mixed, hyperthermic Vertic Haplustept | FN =6.8 T-1.8 SN
FP ₂ O ₅ =2.2T-1.9 SP
FK ₂ O=4.7T-2.1 SK | 50-70 | Khurda, Puri, Nayagarh, Cuttack,
Dhenkanal, Sambalpur, Bargarh
Jharsududa and Sundargarh | | Brinjal (cv. Utkal
Anushree) | Fine, mixed, hyperthermic Vertic Haplustept | FN =1.0 T-0.3 SN
FP ₂ O ₅ =0.7T-1.6 SP
FK ₂ O=4.7T-0.7 SK | 200-250 | Khurda, Puri, Nayagarh, Cuttack,
Dhenkanal, Sambalpur, Bargarh
Jharsududa and Sundargarh | | Potato (cv.
Ashoka) | Fine, mixed, hyperthermic Vertic Haplustept | FN =1.8 T-1.1 SN
FP ₂ O ₅ =0.5T-1.8 SP
FK ₂ O=1.1T-1.3 SK | 250-300 | Khurda, Puri, Nayagarh, Cuttack,
Dhenkanal, Sambalpur, Bargarh
Jharsududa and Sundargarh | | Pumpkin (cv.
Guamal) | Fine, mixed, hyperthermic Vertic Haplustept | FN =4.9 T-1.2 SN
FP ₂ O ₅ =2.7T-2.7 SP
FK ₂ O=2.0T-0.5 SK | 50-70 | Khurda, Puri, Nayagarh, Cuttack,
Dhenkanal, Sambalpur, Bargarh
Jharsududa and Sundargarh | | Rajasthan | | | l | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Wheat (Raj
1482) | Alluvial soils
(Adsar and
Khiran series) | FN=8.54 T-0.63 SN
FP ₂ O ₅ =6.93T-3.72SP
FK ₂ O=7.21T-0.55 SK | 25-30 | All districts of Rajasthan | | Mustaed (T-59) | Alluvial soils
(Bhamatsar and
Khiran series) | FN =27.25 T-0.969 SN
FP ₂ O ₅ =22.11T-5.69 SP
FK ₂ O=21.54T-0.59 SK | 8-10 | Bikaner | | Mothbean
(RMO-40) | Alluvial soils
(Bhamatsar and
Khiran series) | FN =8.61 T-0.29 SN
FP ₂ O ₅ =8.91T-1.66SP
FK ₂ O=17.58T-0.53SK | 8-10 | Bikaner | | Guar (RGC-986) | Alluvial soils
(Bhamatsar and
Khiran series) | FN =5.38 T-0.46 SN
FP ₂ O ₅ =5.07T-2.46SP
FK ₂ O=4.86T-0.34 SK | 15-18 | Bikaner | | Madhya Pradesh | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Rice (IR-8, IT-
1991,Patel-85, | Shallow Medium black and Deep | FN =4.25 T-0.45 SN
FP ₂ O ₅ =3.55T-4.89SP | 30-45 | Bhopal Dhar, Jabalpur, Indore,
Khandwa, Khargone, Mandsaur, | | Kranti,Sugandha
, IR-36, JR 201) | black soils | FK ₂ O=2.1T-0.18 SK | | Narsinghpur, Powarkheda, Rewa,
Satna, Sagar, Sehore, Ujjain | |--|---|--|--------------------------|--| | Wheat
(Narmada4,Kaly
an. Sona, Lok-1
Shera, GW 272) | Shallow Medium
black and Deep
black soils | FN =4.40 T-0.40 SN
FP ₂ O ₅ =4.00T-4.58 SP
FK ₂ O=2.53T-0.16 SK | 30-60 | Bhopal Dhar, Jabalpur, Indore,
Khandwa, Khargone, Mandsaur,
Narsinghpur, Powarkheda, Rewa,
Satna, Sagar, Sehore, Ujjain | | Maize (Chandan
Makka-3,
composite JCM-
323) | Shallow Medium
black and Deep
black soils | FN =4.40 T-0.23 SN
FP ₂ O ₅ =2.38T-1.40 SP
FK ₂ O=2.07T-0.08 SK | 30-60 | Jabalpur, Indore, Khandwa,
Khargone, Mandsaur,
Narsinghpur, Powarkheda,
Sehore, Ujjain | | Cotton (JKH-1
and Hybrid
Cotton) | Shallow Medium
black and Deep
black soils | FN =11.33 T-0.59 SN
FP ₂ O ₅ =6.45T-4.4 SP
FK ₂ O=4.71T-0.14 SK | 15-20 | Bhopal Dhar Jabalpur, Indore,
Khandwa, Khargone, Mandsaur,
Sehore, Ujjain | | Sugarcane (CO-
1307) | Shallow Medium
black and Deep
black soils | FN =5.71 T-1.66 SN
FP ₂ O ₅ =2.28T-11.73 SP
FK ₂ O=1.6T-0.53 SK | 120-150 | Jabalpur, Indore, Khandwa,
Khargone, Narsinghpur,
Powarkheda, Sehore, Bhopal | | Mustard (Pusa
bold ,Aghani) | Alluvial | FN =12.5 T-0.44 SN
FP ₂ O ₅ =4.6T-1.5 SP
FK ₂ O=6.5T-0.19 SK | 12-20 | Gwalior, Jabalpurand Gird region | | Sunflower (JSF-1) | Medium black | FN =9.11 T-0.45 SN
FP ₂ O ₅ =6.27T-2.19 SP
FK ₂ O=9.27T-0.38 SK | 15-18 | Bhopal Dhar, Jabalpur, Indore,
Khandwa, Khargone,
Narsinghpur, and Ujjain | | Niger
(Ootakamund) | Shallow Medium
black and Deep
black soils | FN =11.8 T-0.17 SN
FP ₂ O ₅ =11.17T-3.52 SP
FK ₂ O=10.52T-0.16 SK | 3-6 | Jabalpur, Chindwara | | Arhar (JA-3, ICPL-No.148, Asha) | Medium black
and Deep black | FN =4.87 T-0.37 SN
FP ₂ O ₅ =5.34T-3.47 SP
FK ₂ O=3.61T-0.16 SK | 15-25 | Bhopal Dhar Jabalpur, Indore,
Khandwa, Khargone, Mandsaur,
Narsinghpur, Powarkheda,
Sagar, Sehore, Ujjain | | Urad (T-9) | Shallow, Medium
black and Deep
black | FN =7.82 T-0.39 SN
FP ₂ O ₅ =5.36T-2.62 SP
FK ₂ O=10.83T-0.44 SK | 12.15 | Bhopal Dhar Jabalpur, Indore,
Khandwa, Khargone, Mandsaur,
Narsinghpur, Powarkheda,
Sagar, Sehore, Ujjain | | Gram (JP-74,
JG-62, JG-315,
JG-322) | Medium black
and Deep black | FN =3.73 T-0.18 SN
FP ₂ O ₅ =5.0T-2.5 SP
FK ₂ O=3.8T-0.17 SK | 20-35 | Bhopal Dhar Jabalpur, Indore,
Khandwa, Khargone, Mandsaur,
Narsinghpur, Powarkheda,
Sagar, Sehore, Ujjain | | Kerala
Crop/Variety | Soil | Prescription Equation | Target | Applicable District | | C. Op/ varioty | 30 | . 1000piloti Equation | Range
(q/ha) | Application District | | Banana
(Nendran
Banana) | Laterite | FN =83.49 T-7.69 SN
FP ₂ O ₅ =19.34T-34.93
SP | 20-30 t ha ⁻¹ | Districts of Kerala | | | | FK ₂ O=121.18T-5.38 SK | | | |------------------------------|----------|---|---------------------------|---------------------| | Ginger (Maran) | Laterite | FN =7.80 T-0.37 SN
FP ₂ O ₅ =2.80T-0.64 SP
FK ₂
O=10.60T-0.83 SK | 15-25 t ha ⁻¹ | Districts of Kerala | | Turmeric
(Kanthy) | Laterite | FN =4.70 T-0.63 SN
FP ₂ O ₅ =1.77T-4.48 SP
FK ₂ O=10.49T-0.45 SK | 20-30 t ha ⁻¹ | Districts of Kerala | | Sweet Potato
(Varun) | Laterite | FN =3.04 T-0.27 SN
FP ₂ O ₅ =1.27T-2.85 SP
FK ₂ O=8.60T-0.93 SK | 7.5-15 t ha ⁻¹ | Districts of Kerala | | Cassava
(Tapioca M4) | Laterite | FN =12.10 T-0.74 SN
FP ₂ O ₅ =05.04T-2.02 SP
FK ₂ O=11.93T-1.10 SK | 35 t ha ⁻¹ | Districts of Kerala | | Cucumber
(Mudicode local) | Laterite | FN =3.24 T-0.095 SN
FP ₂ O ₅ =1.64T-1.332 SP
FK ₂ O=3.16T-0.068 SK | 20-30 t ha ⁻¹ | Districts of Kerala | | Salad Cucumber
(AAUC-2) | Laterite | FN =6.10 T-0.31 SN
FP ₂ O ₅ =0.60T-1.38 SP
FK ₂ O=1.30T-0.06 SK | 20-30 t ha ⁻¹ | Districts of Kerala | | Ash Gourd (KAU
Lokal) | Laterite | FN =15.79 T-0.16 SN
FP ₂ O ₅ =3.77T-0.90 SP
FK ₂ O=8.31T-0.024 SK | 15-30 t ha ⁻¹ | Districts of Kerala | ### Fertilizer prescription equation under integrated plant nutrient supply system In this technology, the fertilizer nutrient doses are adjusted not only to that contributed from soil but also from various organic sources like FYM, green manure, compost crop residues and bio-fertilizers like Azospirillum and Phosphobacteria. As the present requiment of chemical fertilizers is 32 million tonnes and only 22 million tonnes of chemical fertilizers are being used, a shortage of 10 million tonnes is occurring and hence combined use of chemical fertilizers along with organics becomes inevitable. In addition to this, addition of organics will help in sustaining the soil productivity and maintaining the soil health by way of improvement of soil physical, chemical and biological properties. ### Methodology of IPNS using STCR calibration It is same as described in previous section. Apart from determination of nutrient requirement (NR) in kg q⁻¹ of economic produce, per cent availability of soil available nutrients (CS) as measured by soil tests, and per cent availability of the fertilizer nutrients (CF), and contribution from organic nutrients (CO) were also computed using following equation: Contribution of N or P_2O_5 or K_2O from Organics (CO)= [Total uptake of N or P_2O_5 or K_2O in organic plots in kg/ha STV of N or P x 2.29 or K x 1.21 in organic plots in kg/ha x mean Cs of N or P_2O_5 or K_2O] / [Amount of N or P2O5 or K2O added as organics in kg/ha] The calculated parameters are transformed into the fertilizer adjustment equation as given below. F = T x NR/ CF - CS x STV/ CF - CO x M/ CF Where, F = Fertilizer dose of N, P₂O₅ or K₂O in kg ha⁻¹ T = Yield target in q ha⁻¹ NR = Nutrient requirement of N, P_2O_5 (P x 2.29) or K_2O (K x 1.21) in 100 /kg for economic produce. CS = Contribution from soil nutrients in fraction CF = Contribution from fertilizer nutrients in fraction CO = Contribution from organic nutrients in fraction STV = Soil available nutrients [N, P_2O_5 (P x 2.29) or K_2O (K x 1.21)] determined through soil analysis M = Nutrient content in organic matter [N, P_2O_5 (P x 2.29) or K_2O (K x 1.21)] determined through organic matter analysis \times FYM Different centres of AICRP on STCR developed fertilizer and manure prescription equations with IPNS approach for different crops. | Andhra Prades | 1 | | | | |-----------------------|---------------------------------|--|---------------------------|---| | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Rice (NLR - 9672) | Sandy
clay loam | N=3.43T-1.45SN-0.70 ON
FP ₂ O ₅ =1.30T-4.83SP-0.43 OP
FK ₂ O=1.93T-0.56SK-0.104 OK
FN=3.43T-1.45SN-0.65 ON**
FP ₂ O ₅ =1.30T-4.83SP-0.38 OP**
FK ₂ O=1.93T-0.56SK-0.14 OK** | 80 | Nellore,
Ongole,Chittoor and
Cuddapah | | Rice (MTV -
5182) | Vertisol
(clay) | FN=3.36T-0.33SN-0.74F ON
FP ₂ O ₅ =2.53T-4.53SP-0.81 OP
FK ₂ O=1.42T-0.12SK-0.15 OK
FN=3.36T-0.33SN-1.62ON**
FP ₂ O ₅ =2.53T-4.53SP-1.30 OP**
FK ₂ O=1.42T-0.12SK-1.09 OK** | 60 | Kurnool, Ongole and
Cuddapah | | Rice (Tella
hamsa) | Sandy
clay loam
(Tropaque | FN=4.20T-0.55SN-0.74 ON
FP ₂ O ₅ =2.7T-2.67SP-0.81 OP
FK ₂ O=2.22T-0.21SK-0.15 OK | 70 | Ranga Reddy and
Mahaboobnagar | | | pt) | FN=4.20T-0.55SN-1.62 ON** | | | |----------------|--------------|--|---------|----------------------| | | | FP ₂ O ₅ =2.7T-2.67SP-1.30 OP** | | | | | | FK ₂ O=2.22T-0.21SK-1.09 OK** | | | | Rice | Vertisols | FN=3.79T-0.50SN-0.43ON | 60 | Nizamabad Ranga | | | | FP ₂ O ₅ =3.19T-3.17SP-0.34 OP | | Reddy and | | | | FK ₂ O=1.60T-0.19SK-0.24 OK | | Mahaboobnagar | | | | FN=3.79T-0.50SN-0.94 ON** | | | | | | FP ₂ O ₅ =3.19T-3.17SP-1.38 OP** | | | | | | FK ₂ O=1.60T-0.19SK-1.38 OK** | | | | Rice (MTU - | Alluvial | FN=2.30T-0.32SN-0.74 ON | 70 | East Godavari | | 2067) | | FP ₂ O ₅ =1.91T-1.90SP-0.36 OP | | | | , | | FK ₂ O=2.27T-0.27SK-0.29 OK | | | | | | FN=2.30T-0.32SN-0.57 ON** | | | | | | FP ₂ O ₅ =1.91T-1.90SP-2.43 OP** | | | | | | FK ₂ O=2.27T-0.27SK-1.35 OK** | | | | Rice (Pothana) | Vertisol | FN=4.75T-0.75SN-0.76 ON | 60 | Warangal and | | | | FP ₂ O ₅ =2.75T-4.20SP-0.34 OP | | Karimnagar | | | | FK ₂ O=1.99T-0.15SK-0.34 OK | | - tallingal | | | | FN=4.75T-0.75SN-1.45 ON** | | | | | | FP ₂ O ₅ =2.75T-4.20SP-2.51 OP** | | | | | | FK ₂ O=1.99T-0.15SK-1.31 OK** | | | | Rainfed Jowar | Alfisol | FN=7.29T-0.82SN-0.38 ON | 20-25 | Mahaboobnagar | | (CHS-9) | (Sandy | FP ₂ O ₅ =4.30T-1.53SP-0.19 OP | 20 20 | Ranga Reddy and | | (0110 0) | Loam) | FK ₂ O=5.10T-0.39SK-0.17 OK | | Kurnool | | Sugarcane | Sandy clay | FN=3.43T-1.45SN-0.70 ON | 125-150 | Nellore Ongole | | (87A-298) | loam | FP ₂ O ₅ =1.30T-4.83SP-0.43 OP | (t/ha) | Chittoor and | | (0771 200) | (Alluvial) | FK ₂ O=1.93T-0.56SK-0.03 OK | (UTIA) | Cuddapah | | Colocassia | Alluvial | FN=12.11T-0.53SN-0.32 ON | 20-25 | Nellore | | (KCS-2) | soil | FP ₂ O ₅ =6.70T-1.84SP-0.36 OP | (t/ha) | 11011010 | | (1100 2) | COII | FK ₂ O=14.45T-0.64SK-0.075OK | (oria) | | | Tomato (Pusa | Alfisol | FN=15.48T-2.28SN-0.681ON | 15-20 | Ranga Reddy and | | rabi) | 7111301 | FP ₂ O ₅ =1.78T-1.14SP-0.383OP | (t/ha) | Mahabubnagar | | Tabi) | | FK ₂ O=6.82T-1.02SK-0.082 OK | (UTIA) | Manababhagai | | Onion (Nasic | Alfisols | FN=0.745T-0.38SN-0.23 ON | 150-200 | Ranga Reddy and | | Red) | Aiiisois | FP ₂ O ₅ =1.15T-2.59SP-0.830 OP | 130 200 | Rajendranagar | | ricu) | | FK ₂ O=1.08T-0.31SK-1.410 OK | | rajendranagar | | | | FN=0.745T-0.38SN-0.469 ON*** | | | | | | $FP_2O_5=1.15T-2.59SP-0.75 OP***$ | | | | | | FK ₂ O=1.08T-0.31SK-0.98 OK*** | | | | Onion (Nasic | Alfisol | FN=0.83T-0.30SN-0.34 ON | 200 | Ranga Reddy, Nellore | | Red) | Allisoi | FP ₂ O ₅ =0.96T-1.76SP-0.66 OP | 200 | and Ongole | | neu) | | FK ₂ O=1.86T-0.75SK-0.77 OK | | and Ongole | | | | FN=0.83T-0.30SN-0.55 ON*** | | | | | | FP ₂ O ₅ =0.96T-1.76SP-0.78 OP*** | | | | | | FK ₂ O=1.86T-0.75SK-0.93 OK*** | | | | Muskmelon | Alfisol (Red | FN=2.02T-0.31SN-0.06 ON*** | 65-80 | Hydorabad | | | ` | | 00-00 | Hyderabad | | (Maduras) | soil) | FP ₂ O ₅ =0.53T-0.97SP-0.07 OP*** | | | | Foytoil millet | Vertisol | FK ₂ O=0.77T-0.06SK-0.09 OK***
FN=16.16T-2.60SN-0.18 ON*** | 10.00 | Llydorobod | | Foxtail millet | | | 18-20 | Hyderabad | | (Krishnadevara | (Black soil) | FP ₂ O ₅ =4.10T-0.97SP-0.07 OP*** | | | | Soil Alfisol, Entisol,Inc | Prescription Equation FN=5.27T-0.25 SN-1.06 ON FP ₂ O ₅ =4.13T-0.38 SP-0.98 OP | Target
Range
(q/ha) | Sangli, Kolhapur, Solapur and Dhule Applicable District Kangra, Sirmour, Mandi, Kullu, and | |----------------------------|--|--|--| | | - | Range | Solapur and Dhule | | sh | FK ₂ O=34.00T-0.26 SK-1.66 OK | | | | | FK ₂ O=34.00T-0.26 SK-1.66
OK | | | | . Aplactort | = * | 1 | , | | | | 7 (t/ha) | Ahmednagar,Nasik
Pune, Satara, | | | FK ₂ O=4.52T-0.45 SK-1.40 OK | | Satara | | Туріс | FN=6.45T-0.88 SN-2.55 ON | 70 | Solapur and Dhule Kolhapur, Sangli and | | Ustorthent | FP ₂ O ₅ =2.5T-2.78SP-0.57 OP
FK ₂ O=3.44T-0.22SK-0.76OK | | Pune, Satara, Sangli, Kolhapur, Solapur and Dhule | | Туріс | FN=4.13T-0.43SN-1.13 ON | 30 (t/ha) | Ahmednagar,Nasik | | Ustorthent | FN=1.20/1-0.315SN-0.81 ON
FP ₂ O ₅ =0.878T-5.35SP-0.71OP
FK ₂ O=1.180T-1.156SK-0.76 OK | 1/5 | Pune
Ahmednagar,Auranga
bad and Nasik | | | - | | Sangli,Kolhapur,
Solapur and Dhule | | Typic
Haplustert | FP ₂ O ₅ =3.92T-2.20SP-1.20 OP | 25 (t/ha) | Ahmednagar,Nasik
Pune, Satara, | | <u> </u> | FK ₂ O=11.06T-0.14SK-1.46 OK | 05 (1" | Sangli,Kolhapur,
Solapur and Dhule | | Typic
Haplustert | FN=15.54T-0.39SN-0.45ON
FP ₂ O ₅ =9.61T-2.21SP-1.45 OP | 12 (t/ha) | Ahmednagar,Nasik
Pune, Satara, | | | FK ₂ O=3.47T-0.11 SK-0.27 OK | | Sangli,Kolhapur,
Solapur and Dhule | | Typic
Haplustert | FN=3.97T-0.39 SN-0.09ON
FP ₂ O ₅ =4.14T-2.95 SP-1.5 OP | 25 | Ahmednagar,Nasik
Pune, Satara, | | Soli | Prescription Equation | Range
(q/ha) | Applicable District | | | | 1 - | | | | | | | | ` | = * | | | | Alfisol | FN=40.981T-0.53 SN-0.33 ON*** | 4.5-6.0 | Hyderabad | | clay loam) | FK ₂ O=12.16T-0.85SK-1.12 OK*** | | | | | | 22-28 | Hyderabad | | | Alfisol (Sandy loam) ***Vermicom Soil Typic Haplustert Typic Haplustert Typic Haplustert Typic Ustorthent Typic Ustorthent | $\begin{array}{c} \text{(Sandy } \\ \text{clay loam)} & FP_2O_5=7.54T-4.37\text{SP-}0.27 \text{ OP}^{***} \\ \text{FK}_2O=12.16T-0.85\text{SK-}1.12 \text{ OK}^{***} \\ \text{Alfisol} & FN=40.981T-0.53 \text{ SN-}0.33 \text{ ON}^{***} \\ \text{FP}_2O_5=5.98T-0.57 \text{ SP-}0.13 \text{ OP}^{***} \\ \text{Isoam)} & FK_2O=12.33T-0.08 \text{ SK-}0.35 \text{ OK}^{****} \\ \text{***Vermicompost} \\ \hline \\ \textbf{Soil} & \textbf{Prescription Equation} \\ \hline \\ \textbf{Soil} & \textbf{Prescription Equation} \\ \hline \\ \textbf{Typic} & FN=3.97T-0.39 \text{ SN-}0.09\text{ON} \\ \text{FP}_2O_5=4.14T-2.95 \text{ SP-}1.5 \text{ OP} \\ \text{FK}_2O=3.47T-0.11 \text{ SK-}0.27 \text{ OK} \\ \hline \\ \textbf{Typic} & FN=15.54T-0.39\text{SN-}0.45\text{ON} \\ \text{FP}_2O_5=9.61T-2.21\text{SP-}1.45 \text{ OP} \\ \text{FK}_2O=11.06T-0.14\text{SK-}1.46 \text{ OK} \\ \hline \\ \textbf{Typic} & FN=6.0T-0.30\text{SN-}1.44 \text{ ON} \\ \text{FP}_2O_5=3.92T-2.20\text{SP-}1.20 \text{ OP} \\ \text{FK}_2O=3.07T-0.06\text{SK-}1.12 \text{ OK} \\ \hline \\ \textbf{Typic} & FN=1.207T-0.315\text{SN-}0.81 \text{ ON} \\ \text{FP}_2O_5=0.878T-5.35\text{SP-}0.71\text{ OP} \\ \text{FK}_2O=1.180T-1.156\text{SK-}0.76 \text{ OK} \\ \hline \\ \textbf{Typic} & FN=4.13T-0.43\text{SN-}1.13 \text{ ON} \\ \text{FP}_2O_5=2.5T-2.78\text{SP-}0.57 \text{ OP} \\ \text{FK}_2O=3.44T-0.22\text{SK-}0.76\text{OK} \\ \hline \\ \textbf{Typic} & FN=6.45T-0.88 \text{ SN-}2.55 \text{ ON} \\ \text{FP}_2O_5=4.03T-6.48 \text{ SP-}0.59 \text{ OP} \\ \text{FK}_2O=4.52T-0.45 \text{ SK-}1.40 \text{ OK} \\ \hline \\ \textbf{Typic} & FN=37.25T-0.40 \text{ SN-}3.38 \text{ ON} \\ \hline \end{aligned}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | eptisol | FK ₂ O=4.05T-0.23 SK-0.80 OK | | Shimla | |------------------|-----------|--|---------------------------|---------------------| | Turmeric | Alfisol | FN=2.51T-0.54 SN-0.15 ON | 80 | Kangara | | (Palam | | FP ₂ O ₅ =0.80T-0.82 SP-0.11 OP | | S . | | Pitamber) | | FK ₂ O=4.82T-1.76 SK-0.42 OK | | | | Frenchbean | Alfisol | FN=2.15T-0.37 SN-0.56 ON | 90 | Kangra | | (Laxmi) | | FP ₂ O ₅ =1.69T-4.34 SP-0.53 OP | | | | , | | FK ₂ O=1.78T-0.63 SK-0.51 OK | | | | Onion (Nasik | Alfisol | FN=3.24T-0.77SN-0.58 ON | 120 | Kangra | | red) | | FP ₂ O ₅ =0.81T-1.37SP-0.07 OP | | | | , | | FK ₂ O=1.25T-0.40SK-0.23 OK | | | | Pea (PB 89) | Alfisol | FN=3.38T-0.79 SN-0.06 ON | 70 | Kangra | | | | FP ₂ O ₅ =1.04T-0.66 SP-0.04 OP | | | | | | FK ₂ O=2.11T-0.45 SK-0.02 OK | | | | Garlic (GHC-1) | Alfisol | FN=5.67T-0.38 SN-0.14 ON | 70 | Kangra | | | | FP ₂ O ₅ =1.38T-0.52 SP-0.26 OP | | | | | | FK ₂ O=1.87T-0.15 SK-0.13 OK | | | | Karnataka | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Rice (Rasi) | Red | F.N.=4.703T-274.865SN-0.00141ON | 20 | Zone-6 (IPNS) | | 1 1100 (1 1010.) | 1100 | F.P ₂ O ₅ =1.636T-0.2563SP- | (q/acre) | Mandya and Mysore | | | | 0.00077OP | (| | | | | F.K ₂ O=2.306T-0.494SK-0.0014 OK | | | | Groundnut | Red | F.N.=3.38T-0.53SN-0.000334 ON | 180-300 | Zone-5 (IPNS) | | (TMV-2) | | F.P ₂ O ₅ =5.85T-1.063SP-0.000332 OP | (kg/acre | Banglore, Kolar, | | , | | F.K ₂ O=4.24T-0.533SK-0.000423 OK |) | Mandya and Tumkur | | | | | | | | Soybean | Red Sandy | F.N.=3.5T-0.268SN-0.00313 ON | 10 | Bangalore | | (Improved | loam | F.P ₂ O ₅ =5.72T-0.504SP-0.00667 OP | (q/acre) | | | varieties) | | F.K ₂ O=7.02T-0.475SK-0.004533 OK | | | | Brinjal (Arka | Red Sandy | F.N.=0.808007T-0.54204SN-0.00113 | 40 (t/ha) | Bangalore | | Ananda) | loam | ON | | | | | | F.P ₂ O ₅ =0.28433T-0.51037SP- | | | | | | 0.00113 OP | | | | | | F.K ₂ O=0.21128T-0.16118SK- | | | | | | 0.00036 OK | | | | 0 | D / C · | EN 4 045000T 0 004455011 0 005 | 000 | B . | | Carrot (New | , | F.N.=1.045288T-0.394455SN-0.227 | 200 | Bangalore | | Karoda) | loam | ON 5 D 0 404007T 0 4040FF0D | (q/ha) | | | | | F.P ₂ O ₅ =0.494327T-0.434055SP- | | | | | | 0.144 OP | | | | | | F.K ₂ O=0.870453T-0.657043SK- | | | | | | 0.5065 OK | | | | Chhattisgarh | <u> </u> | | | | | Crop/Variety | Soil | Prescription Equation | Target | Applicable District | | or op, carroly | 33 | - 1000 photo = quanton | Range
(q/ha) | - Ippauto Biotilot | | Rice (Indira-
9) | Vertisol | FN=3.65T-(0.489SN+5.12tFYM)
FP ₂ O ₅ =129-(16710-244T) ^{1/2} -
(2.89SP+3.0 tFYM)
FK ₂ O=No K if SK>250 kg ha ⁻¹ | 35-55 | Raipur Durg,
Rajnandgaon,
Mahasamund,
Dhamtari and
Bilaspur | |------------------------------------|------------|---|--------------|--| | Rice (Indira-
9) | Inceptisol | FN=4.58T-(0.677 SN+6.02tFYM)
FP ₂ O ₅ =91-(8313-147T) ^{1/2} -
(3.13SP+3.26 tFYM)
FK ₂ O=No K if SK>250 kg ha ⁻¹ | 35-55 | Raipur Durg, Rajnandgaon, Mahasamund, Dhamtari and Bilaspur | | Hybrid rice
(Pro agro-
6444) | Inceptisol | FN=478-(228364-2500T) ^{1/2} -0.542SN-
5.85tFYM
FP ₂ O ₅ =227-(51609-588T) ^{1/2} -4.72SP-
3.69 tFYM | 50-80 | Raipur Durg, Bilaspur,
Janjgir, Raigarh ,
Mahasamund and
Dhamtari | | Hybrid rice
(Indira Sona) | Inceptisol | FN=5.18T-0.88SN-0.79 ON
FP ₂ O ₅ =1.48T-2.50 SP -0.45 OP
FK ₂ O=2.13T-0.24SK -0.11 OK | 50-75 | Raipur
Durg,Rajanadgaon,
Kawardha Bilaspur
and Dhamtari | | Hybrid rice
(Indira Sona) | Vertisol | FN=6.02T-1.05SN-0.85 ON
FP ₂ O ₅ =1.48T-2.51 SP -0.34 OP
FK ₂ O=2.53T-0.20SK -0.09 OK | 50-75 | Raipur
Durg,Rajanadgaon,
Kawardha and
Bilaspur | | Rice (MTU-
1010) | Vertisol | FN=4.38T-0.23SN-0.20 ON
FP ₂ O ₅ =1.11T-0.66SP-0.08 OP
FK ₂ O=1.29T-0.04SK -0.02 OK | 30-40 | Raipur Durg,Rajnandgaon Bilaspur, Kawardha Janjgir, Jashpur, Mahasamund, Dhamtari and Kanker | | Sugarcane
(Co- JN-
14186) | Vertisol | FN=0.59T-1.12SN-0.88 ON
FP ₂ O ₅ =0.13T-3.46 SP -0.37 OP
FK ₂ O=0.15T-0.13SK -0.15 OK | 500-
1000 | Raipur Durg,Rajnandgaon Bilaspur and Kawardha | | Sunflower
(Jwalamukhi) | Vertisol | FN=9.09T-(0.45 SN+4.6tFYM)
FP ₂ O ₅ =2010-(4040100-16666T) ^{1/2} -
(2.75SP+4.2 tFYM)
FK ₂ O=No if SK>250 kg ha ⁻¹ | 15-25 | Raipur
Durg,Rajnandgaon
Bilaspur and
Kawardha | | Sunflower
(Jwalamukhi) | Inceptisol | FN=13.97T-(0.68 SN+6.34tFYM)
FP ₂ O ₅ =183-(33620-1429T) ^{1/2} -
(3.1SP+4.98tFYM)
FK ₂ O=No Ki f SK>250 kg ha ⁻¹ | 15-25 | Raipur Raigarh,
Durg,Mahasamund,
Dhamtari and
Bilaspur | | Sunflower
(JSF-1) | Vertisol | FN=14.55T-(0.62SN+5.56tFYM)
FP ₂ O ₅ =133-(17689-1000T) ^{1/2} -
(2.70SP+4.34tFYM)
FK ₂ O=No Ki f SK>250 kg ha ⁻¹ | 10-16 | Raipur Durg,Rajnandgaon Kawardha and Bilaspur | | Chickpea
(Vijay) | Vertisol | FN=5.37T-2.80SN-0.24ON
FP ₂ O ₅ =10.03T-7.28SP-1.06 OP
FK ₂ O=21.37T-0.65SK -0.61 OK | 8-16 | Raipur
Durg,Rajnandgaon
Kawardha and | | | | | | Bilaspur | |------------------------------|-----------------------------------|---|---------------------------|---| | Cauliflower
(Sungro Pusi) | Vertisol | FN=1.44T-0.29SN-0.09 ON
FP ₂ O ₅ =0.37T-0.74 SP -0.05 OP
FK ₂ O=0.57T-0.05SK -0.02 OK | 100-150 | Raipur Durg and
Bilaspur, | | Brinjal (Mukta
kesi) | Inceptisol | FN=1.30T-(0.55SN+4.86tFYM)
FP ₂ O ₅ =115-(13254.6-58.5T) ^{1/2} -
(2.99SP+6.25tFYM)
FK ₂ O=No K if SK>250 kg ha ⁻¹ | 150-225 | Raipur Raigarh,
Mahasamund,
Dhamtari Bilaspur | | Delhi and Uttar | Pradesh | | • | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Wheat | Typic
Haplustept
(Alluvial) | FN=3.85T-0.41SN-1.64 ON
FP ₂ O ₅ =2.78T-4.12SP -1.72 OP
FK ₂ O=2.04T-0.29SK -0.88 OK | 50-60 | Gautam
Budhanagar,
Ghaziabad,
Bagpat,Meerut,Mujjaf
arnagar,Saharanpur,
Buland
Shahr,Aligarh,Maha
Mayanagar,Etah,Agra
,Etawah,Mainpuri,Shi
kohabad,Agra,Mathur
a,Jhansi,Ferozabad
and Jalaun | | Maize | Typic
Haplustept
(Alluvial) | FN=5.02T-0.35SN-1.82 ON
FP ₂ O ₅ =3.93T-3.62SP -2.29 OP
FK ₂ O=2.25T-0.17SK -1.00OK | 30-40 | Districts of UP | | Pearlmillet | Typic
Haplustept
(Alluvial) | FN=5.35T-0.29SN-2.23 ON
FP ₂ O ₅ =4.72T-3.29 SP -2.48 OP
FK ₂ O=2.88T-0.17SK -1.35 OK | 25-30 | Delhi state and adjoining soil-agroclimatic areas of UP | | Mustard | Typic
Haplustept
(Alluvial) | FN=6.64T-0.38SN-1.72 ON
FP ₂ O ₅ =6.10T-4.02 SP -2.43 OP
FK ₂ O=3.84T-0.24SK -1.21 OK | 20-25 | Delhi state and adjoining soil-agro-climatic areas of UP | | Soybean | Typic
Haplustept
(Alluvial) | FN=6.43T-0.34SN-1.33 ON
FP ₂ O ₅ =5.36T-2.83 SP -2.92 OP
FK ₂ O=3.50T-0.19SK -0.88 OK | 20-25 | Delhi state and adjoining soil-agro-climatic areas of UP | | Uttarakhand | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Maize (Pragati) | Mollisols
and
Inceptisols | FN=12.56T-1.03N-0.32 ON
F P ₂ O ₅ =4.65T-3.6 SP -1.56 OP
FK ₂ O=5.94T-0.59SK -0.93 OK | 30-40 | U.S.Nagar, Haridwar,
Nainital and some
parts of Western UP | |----------------------|---|---|---------------------------|--| | Mustard (PYS-I) | Mollisols
and
Inceptisols | F N=15.63T -1.04 SN-1.61 ON
F P ₂ O ₅ =2.40T-1.03 SP-0.32 OP
FK ₂ O=3.88T-0.16SK-0.40 OK | 15-20 | U.S.Nagar, Haridwar,
Nainital and some
parts of Western UP | | Onion (Nasik
Red) | Mollisols
and
Inceptisols | F N=0.62T -0.691 SN-2.07 ON
F P ₂ O ₅ =0.136T-0.45SP-0.598OP
FK ₂ O=0.237T-0.306SK-0.188 OK | 300-350 | U.S.Nagar, Haridwar,
Nainital and some
parts of Western UP | | Bihar | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Wheat | Young
Alluvium
Calcareous
soil | FN =6.67T-0.43 SN-0.52 ON
FP ₂ O ₅ =3.84T-3.43SP-0.85 OP
FK ₂ O=3.54T-0.74S K-0.27 OK
(Compost) | 30-40 | East Champaran, Wast Champaran, Siwan Saran Sitamarhi Shivhar Muzaffarpur Vaishali Samastipur Gopalganj Begusarai and part of Khagaria | | Wheat | Young
Alluvium
Calcareous
soil | FN =5.08T-0.29 SN-0.63 ON
FP ₂ O ₅ =2.81T-1.50SP-0.79 OP
FK ₂ O=3.41T-0.52S K -0.67 OK
(Biogas Slurry) | 30-40 | East Champaran, Wast Champaran, Siwan Saran Sitamarhi Shivhar Muzaffarpur Vaishali Samastipur Gopalganj Begusarai and part of Khagaria | | Wheat | Young
Alluvium
Calcareous
soil | FN =5.85T-0.40 SN-0.46 ON
FP ₂ O ₅ =3.72T-2.02SP-0.44 OP
FK ₂ O=3.96T-0.56S K -0.82 OK
(Poultry Manure) | 30-40 | East Champaran, Wast Champaran, Siwan Saran Sitamarhi Shivhar Muzaffarpur Vaishali Samastipur Gopalganj Begusarai and part of Khagaria | | Wheat | Young
Alluvium
Calcareous
soil | FN =5.12T-0.36 SN-0.74 ON
FP ₂ O ₅ =3.42T-4.24SP-1.76 OP
FK ₂ O=2.50T-0.69S K -2.02 OK
(Mustard Oil Cake) | 30-40 | East Champaran, Wast Champaran, Siwan Saran Sitamarhi Shivhar Muzaffarpur Vaishali Samastipur Gopalganj Begusarai and part of Khagaria | | Wheat | Old
Alluvium | FN =4.92T-0.22 SN-0.51ON
FP ₂ O ₅ =2.62T-1.18SP-0.77 OP | 30-40 | East Champaran,
Wast Champaran, | | Tamil Nadu | Light
Textured
soil | FK ₂ O=3.63T-0.65S K -0.60 OK | | Siwan Saran
Sitamarhi Shivhar
Muzaffarpur Vaishali
Samastipur
Gopalganj Begusarai
and part of Khagaria | | | |--------------------------------|---|---|---------------------------|---|--|--| | Crop/Variety | | | | | | | | Crop/variety | 3011 | Prescription Equation | Target
Range
(q/ha) | Applicable District | | | | Maize (CO-1) | Mixed
black
(Perianaick
enpalayam
series) | FN =5.29 T-0.38 SN-0.78 ON
FP ₂ O ₅ =2.08T-1.29 SP-0.89 OP
FK ₂ O=5.20T-0.45SK-0.78 OK | 50 | Salem and Tiruchirappalli | | | | Cotton (MCU 5) | Mixed
black
(Perianaick
enpalayam
series) | FN =8.81 T-0.62 SN-0.77 ON
FP ₂ O ₅ =2.53T-1.36 SP-1.08 OP
FK ₂ O=4.92T-0.25SK-0.77 OK | 30 | Coimbatore Salem
Tiruchirappalli | | | | Cotton (MCU 5) | Red (Irugur
series) | FN =5.29 T-0.38 SN-0.78 ON
FP ₂ O ₅ =2.08T-1.29 SP-0.89 OP
FK ₂ O=5.20T-0.45SK-0.78 OK | 30 | Coimbatore, Dindigul
Erode,Karur,Madurai,
Namakkal,Salem
Theni and
Tiruchirappalli | | | | Sugarcane
(COC 671) | Mixed
black
(Perianaick
enpalayam
series) | FN =4.17 T-1.09 SN-1.11 ON
FP ₂ O ₅ =1.01T-2.56 SP-1.01 OP
FK ₂ O=3.44T-0.84SK-1.03 OK | 125
(t/ha) | Coimbatore Salem
Tiruchirappalli | | | | Sugarcane-
(CO6304) | Red
(Gadillum
series) | FN =4.06 T-0.74 SN-0.87 ON
FP ₂ O ₅ =0.71T-1.09 SP-0.72 OP
FK ₂ O=2.67T-0.57SK-1.30 OK | 125
(t/ha) | Cuddalore | | | | Sugarcane
(COC 671) | Red (Irugur
series) | FN =3.42 T-0.56 SN-0.93 ON
FP ₂ O ₅ =1.15T-1.94 SP-0.98 OP
FK ₂ O=3.16T-0.73SK-0.99 OK | 100
(t/ha) | Coimbatore, Dindigul
Erode,Karur,Madurai,
Namakkal,Salem
Theni and
Tiruchirappalli | | | | Sunflower
(Morden) | Mixed
black
(Perianaick
enpalayam
series) | FN =9.60 T-0.49 SN-0.68 ON
FP ₂ O ₅ =4.20T-1.87 SP-0.80 OP
FK ₂ O=9.24T-0.45SK-0.64 OK | 15 | Coimbatore Salem
Tiruchirappalli | | | | Cabbage
(Hybrid-
Questo) | Irugur
series | FN =0.55 T-0.89 SN-0.76 ON
FP ₂ O ₅ =0.29T-2.75 SP-0.80 OP
FK ₂ O=0.36T-0.31SK-0.56 OK | 700 | Coimbatore and Dindigul | | | | Onion (CO 4) | Red | FN =0.99 T-0.37 SN-0.58 ON | 170 | Coimbatore, Dindigul | | | | | (Inceptisol) | FP ₂ O ₅ =0.58T-1.43 SP-0.69 OP
FK ₂ O=0.67T-0.25SK-0.44 OK | | Erode,Karur,Madurai,
Namakkal,Salem
Theni and
Tiruchirappalli | |----------------------------------|---|---|-----|---| | Hill Wheat (HW 2044) | (Ooty
Series) | FN =7.60 T-0.55 SN-0.92 ON
FP ₂ O ₅ =3.59T-0.26 SP-0.54 OP
FK ₂ O=3.88T-0.45SK-0.51 OK | 40 | Nilgiris | | Plains wheat (CoW (W) 1) | Mixed
black
calcareous
(Perianaick
enpalayam
series) | FN =8.83 T-0.71 SN-0.88 ON
FP ₂ O ₅ =4.52T-1.75 SP-0.95 OP
FK ₂ O=6.05T-0.20SK-0.83 OK | 40 | Coimbatore,
Tirupur,Salem and
Trichy | | Sorghum (CSH 5) | Red-Sandy
loam
(Irugur
series) | FN =4.86 T-0.53 SN-0.98 ON
FP ₂ O ₅ =1.63T-0.87 SP-0.90 OP
FK ₂ O=4.56T-0.59SK-0.76 OK | 50 | Coimbatore,Erode,Di
ndigul,
Tiruppur,Salem Trichy
Namakkal, Ariyalur,
Karur, Madurai and
Theni | | Sorghum (CO 24) | Mixed
black
calcareous
(Perianaick
enpalayam
series) | FN =6.06 T-0.81 SN-0.53 ON
FP ₂ O ₅ =2.06T-3.14 SP-0.72 OP
FK ₂ O=5.03T-0.47SK-0.66 OK | 50 | Coimbatore,
Tiruppur,Salem and
Trichy | | Ragi (CO 11) | Mixed
black
calcareous
(Perianaick
enpalayam
series) | FN =4.35 T-0.37 SN-0.98 ON
FP ₂ O ₅ =1.18T-1.03 SP-0.80 OP
FK ₂ O=2.68T-0.14SK-0.40 OK | 40 | Coimbatore,
Tiruppur,Salem and
Trichy | | Groundnut
(POL 2) | Red Sandy
loam
(Irugur
series) | FN =6.54 T-0.56 SN-0.69 ON
FP ₂ O ₅ =3.80T-3.32 SP-0.77 OP
FK ₂ O=8.35T-0.65SK-0.87 OK | 25 | Erode, Dindigul Coimbatore, Tiruppur,Salem Namakkal,Trichy Ariyalur, Karur, Madurai and Theni | | Bhendi (Arka
Anamica) | Mixed
black
calcareous
(Perianaick
enpalayam
series) | FN =1.15 T-0.46 SN-0.81 ON
FP ₂ O ₅ =0.52T-1.31 SP-0.87 OP
FK ₂ O=1.77T-0.64SK-0.91 OK | 150 | Coimbatore,
Tiruppur,Salem and
Trichy | | Cauliflower
(Hybrid
Pawas) | Red Sandy
loam
(Irugur
series) | FN =0.93 T-0.79 SN-0.63 ON
FP ₂ O ₅ =0.44T-1.74 SP-0.85 OP
FK ₂ O=0.44T-0.18SK-0.46 OK | 400 | Erode, Dindigul
Coimbatore,
Tiruppur,Salem
Namakkal Trichy
Ariyalur, Karur, | | | | | | Madurai and Theni | |-------------------------------|---|--|---------------------------|--| | Potato (Kufri
Thenmalai) | Laterite
(Ooty
Series) | FN =0.70 T-0.24 SN-0.41 ON
FP ₂ O ₅ =1.44T-0.55 SP-0.95 OP
FK ₂ O=0.72T-0.25SK-0.39 OK | 400 | Nilgiris, Dindigul | | Carrot (Kuruda
Super) | Laterite
(Ooty
Series) | FN =0.48 T-0.17 SN-0.33 ON
FP ₂ O ₅ =1.11 T-1.17 SP-0.31 OP
FK ₂ O=0.83T-0.40SK-0.43 OK | 400 | Nilgiris, Dindigul | | Beetroot (Ruby
Queen) | Red Sandy
Clay loam
(Palathurai
series) | FN =0.64 T-0.65 SN-0.96 ON
FP ₂ O ₅ =0.52T-1.58 SP-0.92 OP
FK ₂ O=0.61T-0.27SK-0.92 OK | 500 | Coimbatore,
Tirupur,Dindigul
Salem Namakkal &
Madurai | | Radish (Pusa
Chetki long) | Red Sandy
Clay loam
(Palathurai
series) | FN =0.69 T-0.74 SN-1.03 ON
FP ₂ O ₅ =0.28T-1.35 SP-1.15 OP
FK ₂ O=0.43T-0.21SK-0.64 OK | 500 | Coimbatore,
Tirupur,Dindigul
Salem Namakkal &
Madurai | | Tapioca (H
226) | Red Sandy
loam
(Thulukkan
ur
series) | FN =5.60 T-0.61 SN-0.81 ON
FP ₂ O ₅ =3.53T-1.80 SP-0.53 OP
FK ₂ O=9.42T-0.67SK-0.70 OK | 50
(t/ha) | Salem, Namakkal
Trichy, Ariyalur,
Karur, Madurai, Theni
and Erode | | Turmeric (BSR 2) | Red Sandy
loam
(Irugur
series) | FN =1.11 T-0.83 SN-0.98 ON
FP ₂ O ₅ =0.57T-5.21 SP-1.02 OP
FK ₂ O=0.83T-0.50SK-0.61 OK | 350 | Erode, Dindigul
Coimbatore, Tiruppur,
Salem Namakkal
Trichy, Ariyalur Karur,
Madurai and Theni | | Ashwagandha
(JA 20) | Mixed
black
calcareous
(Perianaick
enpalayam
series) | FN =24.77 T-0.61 SN-0.74 ON
FP ₂ O ₅ =18.33T-2.68 SP-0.84 OP
FK ₂ O=18.12T-0.21SK-0.59 OK | 9 | Coimbatore, Tiruppur,
Salem and Trichy | | West Bengal | | | | T | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Boro rice (IET-
4786) | Inceptisol | FN =2.75 T-0.63 SN-0.035 ON
FP=0.48T-0.54 SP-0.07 OP
FK=1.24T-0.62SK-024 OK | 5-5.5
(t/ha) | Nadia,Burdwan and
Murshidabad | | Cabbage
(Green
express) | Inceptisol | FN =4.65 T-0.76 SN-0.75 ON
FP ₂ O ₅ =0.93T-1.14 SP-0.48 OP
FK ₂ O=4.79T-1.78SK -1.22 OK | 70-80
(t/ha) | Nadia,Burdwan and
Murshidabad | | Haryana
Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | 1 | | | | | |---------------------------|---|---|---------------------------|---| | Wheat
(WH711) | Sierozem
(Inceptisols
/Entisols) | FN =5.22T-1.04 SN-0.12 ON
FP ₂ O ₅ =2.38T-4.06 SP-0.14 OP | 45-55 | Districts of Haryana | | Durum Wheat (WH912) | Sierozem
(Inceptisols
/Entisols) | FN =5.57T-1.04 SN-0.15 ON
FP ₂ O ₅ =2.12T-2.68 SP-0.16 OP | 40-50 | Districts of Haryana | | Barley (BH
393) | Sierozem
(Inceptisols
/Entisols) | FN=4.88T-0.98SN-0.15 ON
FP ₂ O ₅ =2.35T-3.80 SP-0.16 OP | 35-45 | Districts of Haryana | | Bajra (HHH
94) | Sierozem (Inceptisols /Entisols) | FN=10.00T-1.43SN-0.13 ON
FP ₂ O ₅ =3.75T-4.46 SP-0.15 OP | 20-30 | Districts of Haryana | | Raya (Luxmi)) | Sierozem
(Inceptisols
/Entisols) | FN=10.61T-0.95SN-0.12 ON
FP ₂ O ₅ =4.73T-3.00 SP-0.10 OP | 18-22 | Districts of Haryana | | Bt Cotton
(MRC 6304) | Sierozem
(Inceptisols
/Entisols) | FN=14.48T-2.17SN-0.18 ON
FP ₂ O ₅ =4.54T-4.78 SP-0.14 OP
FK ₂ O=7.49T-0.63SK -0.10 OK | 25-35 | Bhiwani,Hisar, Sirsa,
Fatehabad and Jind | | Rajasthan | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range
(q/ha) | Applicable District | | Wheat (Raj
3077) | Alluvial soils | FN=7.87 T-0.76 SN-0.50 ON
FP ₂ O ₅ =3.04T-1.50S P-0.45 OP | 25-30 | Bikaner | | | (Adsar and
Khiran
series) | FK ₂ O=4.07T-0.26 S K-0.53 OK | | | | Groundnut (M-13) | (Adsar and
Khiran | | 35-40 | Bikaner | | | (Adsar and
Khiran
series)
Alluvial
soils
(Bhamatsa
r and
Khiran | FK ₂ O=4.07T-0.26 S K-0.53 OK
FN=1.82 T-0.26 SN-0.18 ON
FP ₂ O ₅ =2.08T-1.48S P -0.60 OP | 35-40 | Bikaner All districts of Rajasthan | | Clusterbean vegetable (M- | (Adsar and Khiran series) Alluvial soils (Bhamatsa r and Khiran series) Alluvial soils (Bhamatsa r and Khiran series) | FN=1.82 T-0.26 S K-0.53 OK FN=1.82 T-0.26 SN-0.18 ON FP ₂ O ₅ =2.08T-1.48S P -0.60 OP FK ₂ O=2.43T-0.22S K-0.33 OK FN =11.40 T-1.22 SN-3.35 ON FP ₂ O ₅ =6.60T-1.91S P -184 OP | | All districts of | | | (Adsar and | FK ₂ O=6.95T-0.13SK-0.47 OK | | | |-------------------------------|--|---|-----------------|---| | | Khiran
series) | | | | | Fennel (RF-
125) | Alluvial
soils
(Adsar and
Khiran
series) | FN =8.93 T-0.61 SN -1.52 ON
FP ₂ O ₅ =3.95T-0.94S P -1.36 OP
FK ₂ O=4.37T-0.17SK-0.72 OK | 25-30 | All districts of
Rajasthan | | Bajra (HHB-
67) | Alluvial
soils
(Adsar and
Khiran
series) | FN =7.03 T-0.40 SN -0.62 ON
FP ₂ O ₅ =9.26T-2.01S P -1.09 OP
FK ₂ O=7.76T-0.24SK-0.72 OK | 12-15 | Bikaner | | Egg plant (F1 hybrid Kanhaya) | Alluvial
soils
(Adsar and
Khiran
series) | FN =2.28 T-3.31 SN -2.15 ON
FP ₂ O ₅ =1.63T-7.76S P -3.29 OP
FK ₂ O=1.16T-0.82SK-1.16 OK | 12-15 | Bikaner,Churu and
Jaiselmer | | Cotton (Bt) | Alluvial
soils
(Adsar and
Khiran
series) | FN =15.84 T-1.91 SN -2.77 ON
FP ₂ O ₅ =2.87T-1.76S P-1.67 OP
FK ₂ O=4.82T-0.47SK-0.84 OK | 35-40 | Bikaner | | Okra (Arka
Anamica) | Alluvial
soils
(Adsar and
Khiran
series) | FN =3.27 T-0.83 SN -0.45 ON
FP ₂ O ₅ =1.27T-0.85S P -0.41 OP
FK ₂ O=2.46T-0.37SK-0.26 OK | 65-80 | Bikaner | | Madhya Prades | | | | | | Crop/Variety | Soil | Prescription Equation | Target
Range | Applicable District | | | | | (q/ha) | | | Lentil (JL-1) | Shallow,
Medium
black and
Deep black | FN =5.84 T-0.159 SN-0.270 ON
FP ₂ O ₅ =2.10T-0.658 SP-0.789 OP
FK ₂ O=4.40T-0.094 SK-0.774 K | 10-15 | Bhopal Dhar
Jabalpur, Indore,
Khandwa, Khargone,
Mandsaur,
Narsinghpur,
Powarkheda, Sagar,
Sehore, Ujjain | | Pea (JP-885) | Shallow,
Medium
black and
Deep black | FN =7.54 T-0.76 SN-01.04 ON
FP ₂ O ₅ =3.88T-1.51 SP-1.48 OP
FK ₂ O=6.38T-0.24 SK-0.667 K | 15-25 | Jabalpur, Indore,
Khandwa, Khargone,
Narsinghpur,
Powarkheda, Sehore,
Ujjain | | Garlic (G-323) | Shallow,
Medium
black and
Deep black | FN =7.45 T-0.67 SN-0.80 ON
FP ₂ O ₅ =2.73T-0.655 SP-1.5 OP
FK ₂ O=5.74T-0.28 SK-0.51 OK | 40-50 | Bhopal Dhar
Jabalpur, Indore,
Khandwa, Khargone,
Mandsaur, | | | | | | Narsinghpur,
Powarkheda,Rewa,
Satna Sagar, Sehore,
Ujjain | |--------------------------|----------|--|-----------------|--| | Kerala
Crop/Variety | Soil | Prescription Equation | Target | Applicable District | | | | The state of s | Range
(q/ha) | P F 33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3 | | Sweet Potato
(Varun) | Laterite | F N =3.04 T-0.27 SN-0.20ON
FP ₂ O ₅ =1.27T-2.85 SP-0.62OP
FK ₂ O=8.60T-0.93 SK-0.42OK | 30-50
(t/ha) | All districts of Kerala | | Ash Gourd
(KAU local) | Laterite | F N =15.79 T-0.16 SN-0.33ON
FP ₂ O ₅ =3.77T-0.90 SP-0.10OP
FK ₂ O=8.31T-0.024 SK-0.11OK | 10-20
(t/ha) | All districts of Kerala | ## Use of Targeted Yield Equation and Development of Prediction Equation for Cropping Sequence Nutrient availability in the soil after the harvest of a crop is much influenced by the initial soil nutrient status, the amount of fertilizer nutrients added and the nature of the crop raised. But recently, the monoculture is replaced by cropping sequence approach. To apply soil test based fertilizer recommendations, the soils are to be tested after each crop, which is not practicable. Hence it has become necessary to predict the soil test values after the harvest of the crop. It is done by developing post-harvest soil test value prediction equations making use of the initial soil test values, applied fertilizer doses and the yields obtained or uptake of nutrients following the methodology outline by Ramamoorthy and coworkers in 1971. The post-harvest soil test values were taken as dependent variable and a function of the presowing soil test values and the related parameters as yield/uptake and fertilizer nutrient doses. The functional relationship
is as follows: **Prediction Equation for Cropping Sequence:** The method of calculation for prediction of post harvest soil test values for cropping sequences is given below for use by each center: YP/H = f(F, IS, yield/nutrient uptake) Where, YP/H is the post harvest soil test value, F is the applied fertilizer nutrient and IS is the initial soil test value. The mathematical form is YP/H = a + b1F + b2 IS + b3 yield/uptake Where, a is the absolute constant and b1, b2 and b3 are the respective regression coefficients. Prediction equations for post-harvest soil test values were developed from initial soil test values, fertilizer doses applied and yield of crops/uptake of nutrients to obtain a basis for prescribing the fertilizer amounts for the crops succeeding the first crop in the cropping sequence. During last fifteen year, the different centres of AICRP on STCR developed prediction equation by using the targeted yield equation for different cropping sequence like rice-rice, rice-maize, rice-wheat, maize-tomato, maize-wheat, potato-yellow sarson, paddyragi, maize-Bt. Cotton, wheat-groundnut, okra-wheat, paddy-chick pea, soybean-wheat, rice-pumpkin, bajra-wheat, cotton-maize and soybean-onion. The predicted values can be utilized for recommending the fertilizer doses for succeeding crop thus eliminating the need of soil test after each crop. This provides the way for giving the fertilizer recommendations for whole cropping sequence based on initial soil test values. For example, in Potato—Yellow Sarson cropping sequence: ## Potato (Kufri Jyoti) PHN = $$104.94 + 0.28 \text{ FN} - 0.041 \text{ SN} - 0.11 \text{ Y} (R^2 = 0.35^{**})$$ PHP = $-2.74 + 0.091 \text{ FP} + 0.84 \text{ SP} + 0.013 \text{ Y} (R^2 = 0.78^{**})$ PHK = $31.28 + 0.71 \text{ FK} + 0.45 \text{ SK} - 0.17 \text{ Y} (R^2 = 0.70^{**})$ **Yellow Sarson (PYS-I)** PHN = $107.91 + 0.36 \text{ FN} - 0.08 \text{ SN} - 0.79 \text{ Y} (R^2 = 0.72^{**})$ PHP = $23.19 + 0.26 \text{ FP} + 0.011 \text{ SP} + 0.24 \text{ Y} (R^2 = 0.70^{**})$ PHK = $153.25 + 0.42 \text{ FK} + 0.02 \text{ SK} - 0.54 \text{ Y} (R^2 = 0.56^{**})$ - During last five year plan (XI Plan), AICRP (STCR) conducted 130 field demonstrations on oilseed crops and 150 field demonstrations on other crops on farmers' fields in different states to popularize STCR based fertilizer and manure recommendations to different crops. - During last five year plan (XI Plan), AICRP on STCR conducted 170 on-farm trials to validate fertilizer and manure prescription equations to different crops. ### **Economic Analysis of Fertilizer Doses Associated with Different yield Targets** An appraisal of the effect of nutrients (NPK) applied on crop yield and benefit: cost ratios (BCR), both under (NPK) alone and under IPNS for15 agricultural and horticultural crops is furnished in the input output prices used in these analyses were: Produce prices:-- Paddy (rough rice) and wheat grain Rs 12,000/t, rice straw Rs. 1,200/t wheat straw Rs.500/t, maize grain Rs. 8,000/t maize straw Rs. 500/t, cotton Rs. 25,000/t onion Rs. 9,000t, okra (Bhendi) Rs. 10.000/t cabbage Rs. 3500/t, potato Rs. 7000/t carrot Rs. 5,000/t, beetroot Rs. 3300/t. radish Rs. 3,000/t, tomato Rs. 3,300/t and Ashwagandha Rs. 82,000/t Input prices –Rs. 11.76/kg N through urea, Rs 47.63/kg P_2O_5 through SSP and Rs. 28.00/kg K_2O through MOP, 250/T for FYM and Rs 750/t for vermicompost. Economic analysis of the data showed that out of 66 crop x target combinations, the BCR was between 1and 2 in 35 % cases and between 2.1 and 3.0 in 62% cases. In 3% cases BCR was above 3.Irrespective of the crops, higher yield has been recorded at higher yield targets over lower target coupled with higher net return and BCR. As in the case of yield, wherever three targets (low, medium and high) were tried, the BCR was relatively higher between low and medium target levels then between medium and high target levels both under NPK alone and IPNS. Again, irrespective of the crops and yield targets, yield increase was higher with IPNS then under NPK applied through fertilizers alone. In the regard, farmers can choose the desired yield targets according to their investment capabilities and availability of organic manures but would generally benefit form adopting an appropriate IPNS package as apart form contributing nutrients, organic manures also improve soil physical conditions. At present, the soil test based recommendations are relatively on a stronger footing when these involve only fertilizers as compared to IPNS. This is because there are several issues concerning the nutrient which need to be sorted out as illustrated using STCR information form Andhra Pradesh. One of the outstanding problems is that while the composition of fertilizers is fairly standard, that of organic manures can vary several fold even within the same location or form lot to lot. Happy faermers with produce in FLDs conducted under AICRP (STCR) | Crop | 3 | | ertilizer
oses (kg/ha) | | Yield
(t/ha) | Fertilize
Cost | er BCR | |---|--|--|-----------------------------------|-----------------------------------|--|---|--| | | | N | | K₂O | (0,1101) | Rs./ha | | | Rice - Flooded
(TNAU Farm,
Coimbatore) | 6 t ha ⁻¹ NPK fertilizer
7 t ha ⁻¹ NPK fertilizer
7 t ha ⁻¹ IPNS package* | 137
172
118 | 56
56
36 | 23
23
23 | 6.01
6.94
7.11 | 4922
5286
3746 | 1.52
1.74
1.75 | | Rice – SRI
(TNAU Farm,
Coimbatore &
Farmer's fields,
Coimbatore Dt.) | 7 t ha ⁻¹ NPK from fertilizer
8 t ha ⁻¹ NPK from fertilizer
9 t ha ⁻¹ NPK from fertilizer
7 t ha ⁻¹ IPNS package*
8 t ha ⁻¹ IPNS package*
9 t ha ⁻¹ IPNS package* | 173
222
271
133
182
232 | 62
83
100
39
60
80 | 74
99
100
39
67
95 | 6.68
7.65
8.18
6.94
7.94
8.34 | 7059
9336
10775
4514
6874
9199 | 1.92
2.10
2.18
1.97
2.15
2.16 | | Wheat – Hill
Farmer's fields,
Kalrayan foothills,
Salem Dt. and
Kolli foothills,
Namakal Dt.). | 3.5 t ha ⁻¹ NPK from fertilizer
4.0 t ha ⁻¹ NPK from fertilizer
3.5 t ha ⁻¹ IPNS package*
4.0 t ha ⁻¹ IPNS package* | 156
194
109
147 | 111
129
100
117 | 41
59
28
37 | 3.55
4.07
3.63
4.16 | 8269
10077
6828
8337 | 1.54
1.66
1.49
1.62 | | Wheat – Plains | 3 t ha ⁻¹ NPK from fertilizer | 119 | 91 | 51 | 2.90 | 7161 | 1.33 | | (Farmer's fields, | 4 t ha ⁻¹ NPK from fertilizer | 196 | 110 | 72 | 3.93 | 9560 | 1.66 | |-----------------------|---|-----|-----|-----|-------|-------|------| | Coimbatore Dt.) | 3 t ha ⁻¹ IPNS package* | 65 | 74 | 37 | 2.98 | 5325 | 1.31 | | Combatore Dt.) | 4 t ha ⁻¹ IPNS package* | | | 55 | | | | | Maina Ulubrid | | 152 | 105 | 1 | 4.05 | 8328 | 1.61 | | Maize – Hybrid | 9 t ha ⁻¹ NPK from fertilizer | 244 | 98 | 82 | 8.97 | 9833 | 2.04 | | (Farmer's fields, | 10 t ha ⁻¹ NPK from fertilizer | 290 | 124 | 97 | 10.09 | 12032 | 2.17 | | Coimbatore and | 11 t ha ⁻¹ NPK from fertilizer | 329 | 139 | 113 | 10.33 | 13653 | 2.13 | | Dindigul Dts.) | 9 t ha 1PNS package* | 202 | 78 | 52 | 9.23 | 7546 | 2.05 | | | 10 t ha ⁻¹ IPNS package* | 249 | 104 | 69 | 10.5 | 9813 | 2.21 | | | 11 t ha ¹ IPNS package* | 289 | 119 | 86 | 10.59 | 11474 | 2.14 | | Rain fed Bt | 2.8 t ha ⁻¹ NPK from fertilizer | 103 | 71 | 74 | 2.67 | 6665 | 1.46 | | Cotton (Farmer's | 3.2 t ha ⁻¹ NPK from fertilizer | 123 | 81 | 89 | 3.07 | 7796 | 1.64 | | fields, Perambalur | 2.8 t ha ⁻¹ IPNS package* | 78 | 51 | 48 | 2.84 | 4690 | 1.51 | | Dt.) | 3.2 t ha ⁻¹ IPNS package* | 99 | 67 | 64 | 3.24 | 6147 | 1.68 | | | | | | | | | | | Onion | 17 t ha ⁻¹ NPK from fertilizer | 89 | 18 | 26 | 17.24 | 2632 | 2.34 | | (Farmer's fields, | 20 t ha ⁻¹ NPK from fertilizer | 117 | 33 | 31 | 18.75 | 3816 | 2.50 | | Coimbatore Dt.) | 17 t ha ⁻¹ IPNS package* | 37 | 14 | 14 | 17.72 | 1494 | 2.33 | | , | 20 t ha ¹ IPNS package* | 71 | 34 | 32 | 19.48 | 3350 | 2.50 | | | | | | | | | | | Okra (Bhendi) | 15 t ha ⁻¹ NPK from fertilizer | 78 | 45 | 15 | 15.5 | 3480 | 2.01 | | (Farmer's fields, | 17 t ha ⁻¹ NPK from fertilizer | 97 | 54 | 15 | 16.59 | 4133 | 2.14 | | Coimbatore Dt.) | 15 t ha ⁻¹ IPNS package* | 51 | 30 | 8 | 15.95 | 2253 | 2.10 | | Combatoro Bt.) | 17 t ha ⁻¹ IPNS package* | 70 | 39 | 8 | 17.36 | 2905 | 2.18 | | Cabbage | 60 t ha ⁻¹ NPK from fertilizer | 139 | 64 | 23 | 59.90 | 5327 | 2.43 | | (Farmer's fields, | 70 t ha ⁻¹ NPK from fertilizer | 194 | 93 | 41 | 70.50 | 7859 | 2.78 | | | 60 t ha ⁻¹ IPNS package* | 109 | 49 | 15 | 61.00 | 4036 | 2.76 | | Coimbatore Dt.) | | | | 29 | | | | | Dotate /Formor's | 70 t ha ⁻¹ IPNS package* 30 t ha ⁻¹ NPK from fertilizer | 164 | 78 | 1 | 71.80 | 6456 | 2.79 | | Potato (Farmer's | | 105 | 306 | 59 | 27.60 | 17460 | 1.85 | | fields, Nilgiris Dt.) | 40 t ha ⁻¹ NPK from fertilizer | 175 | 446 | 131 | 38.80 | 26967 | 2.38 | | | 30 t ha ⁻¹ IPNS package* | 98 | 297 | 55 | 29.20 | 16837 | 1.94 | | | 40 t ha ⁻¹ IPNS package* | 168 | 437 | 127 | 40.40 | 26344 | 2.46 | | Carrot (Farmer's | 40 t ha NPK from fertilizer | 125 | 145 | 39 | 40.90 | 9468 | 2.45 | | fields, Nilgiris Dt.) | 50 t ha 1NPK from fertilizer | 173 | 256 | 66 | 52.50 | 16075 | 2.92 | | | 60 t ha ⁻¹ NPK from fertilizer | 221 | 367 | 127 | 59.90 | 23634 | 3.07 | | | 40 t ha IPNS package* | 117 | 139 | 36 | 43.30 | 9004 | 2.54 | | | 50 t ha ¹
IPNS package* | 165 | 250 | 64 | 53.70 | 15639 | 2.92 | | | 60 t ha ⁻¹ IPNS package* | 213 | 361 | 120 | 62.60 | 23058 | 3.15 | | Beetroot (Farmer's | 40 t ha ⁻¹ NPK from fertilizer | 99 | 134 | 80 | 39.50 | 9786 | 2.37 | | fields, Coimbatore | 50 t ha ⁻¹ NPK from fertilizer | 163 | 186 | 131 | 49.98 | 14443 | 2.77 | | | | | | | | | | | and Dindigul Dts.) | 40 t ha ⁻¹ IPNS package* | 59 | 113 | 54 | 40.48 | 7588 | 2.37 | | , | 50 t ha ⁻¹ IPNS package* | 123 | 165 | 99 | 51.37 | 12077 | 2.78 | | Radish (Farmer's | 40 t ha ⁻¹ NPK from fertilizer | 112 | 50 | 71 | 37.20 | 5686 | 2.23 | | fields, Coimbatore | 50 t ha ⁻¹ NPK from fertilizer | 181 | 78 | 114 | 48.80 | 9035 | 2.74 | | and Dindigul Dts.) | 40 t ha ⁻¹ IPNS package* | 67 | 24 | 52 | 38.40 | 3387 | 2.24 | | and Emargar Blo.) | 50 t ha ¹ IPNS package* | 136 | 52 | 87 | 50.60 | 6512 | 2.78 | | Tomato (Farmer's | 70 t ha ⁻¹ NPK from fertilizer | 164 | 135 | 148 | 70.90 | 12502 | 2.47 | | fields, Coimbatore | 80 t ha ⁻¹ NPK from fertilizer | 209 | 177 | 188 | 80.80 | 16152 | 2.71 | | and Dindigul Dts.) | 90 t ha ⁻¹ NPK from fertilizer | 254 | 219 | 228 | 88.30 | 19801 | 2.86 | | מווע טווועושטווטנט.) | | | | | | | | | | 70 t ha ⁻¹ IPNS package* | 120 | 113 | 113 | 72.20 | 9957 | 2.50 | | | 80 t ha ⁻¹ IPNS package* | 165 | 155 | 153 | 81.30 | 13606 | 2.71 | |-------------------|--|-----|-----|-----|-------|-------|------| | | 90 t ha ⁻¹ IPNS package* | 210 | 197 | 193 | 89.50 | 17256 | 2.88 | | Ashwagandha | 0.7 t ha ⁻¹ NPK from fertilizer | 49 | 74 | 66 | 0.671 | 5949 | 1.31 | | (Farmer's fields, | 0.9 t ha ⁻¹ NPK from fertilizer | 79 | 109 | 77 | 0.871 | 8276 | 1.24 | | Salem Dt.) | 0.7 t ha ⁻¹ IPNS package* | 20 | 51 | 40 | 0.696 | 3784 | 1.28 | | , | 0.9 t ha ⁻¹ IPNS package* | 59 | 87 | 68 | 0.905 | 6741 | 1.19 | IPNS package*: For SI. Nos 1-9 and 14 - 15, FYM was applied @12.5 t/ha For SI. Nos. 10-13, Vermicompost was applied @ 5 t/ha. ### Software/data base developed Online fertilser recommendation system: AICRP on STCR in collaboration with National Informatics Centre (NIC), Pune has developed Decision Support System for on-line fertilizer recommendation to different crops grown in various states using the fertilizer prescription equation developed by different centres. On-line fertilizer recommendation system has been completed for 10 states namely; Maharashtra, Andhra Pradesh, Karnataka, Chhattisgarh, Kerala, Orissa, Himachal Pradesh, West Bengal, Jharkhand and Tamil Nadu. This on-line fertilizer recommendation system has been uploaded on STCR website (http://www.stcr.gov.in). Farmers and other end users can get a STCR based fertilizer recommendations to different crops by feeding the soil test values and target yield. GIS based Soil Fertility Maps of Different States: The soil fertility data on N, P and K index values at district level for the states of Andhra Pradesh, Maharashtra, Chhattisgarh, MP, West Bengal, Haryana, Orissa, HP, Karnataka, Punjab and Tamil Nadu has been developed in MS-Access. From the attribute database, the different thematic layers were reclassified to generate various thematic maps on N, P and K index values (IVs). The calculated soil test values were incorporated into the developed fertility maps to prescribe nutrients for targeted yields. GIS-based nutrient index maps of N, P, K of Madhya Pradesh is shown below: ## **Resource generation** Resourece generation during XI Plan period is given below: | Name of the | Year | | | | | | | | |-------------|---------|-----------|----------|----------|----------|-----------|--|--| | STCR centre | 2007-08 | 2008-09 | 2009-10 | 2010-11 | 2011-12 | Total | | | | OUAT, | 47,480 | 48,920 | 1,08,400 | 51,640 | 57,260 | 313,700 | | | | Bhubaneswar | | | | | | | | | | ANGRAU, | 81,721 | 1,15,940 | 58,080 | 1,00,945 | 2,83,300 | 639,986 | | | | Hyderabad | | | | | | | | | | CRIJAF, | 5,676 | 8,771 | 16,391 | 10,700 | 5,847 | 47,385 | | | | Barrackpore | | | | | | | | | | UAS, | 42,916 | 46,544 | 51,424 | 53,964 | 48,489 | 243,337 | | | | Bangalore | | | | | | · | | | | BCKVV, | 13,872 | 14,325.00 | 18,663 | 1,05,014 | 58,035 | 209,909 | | | | Kalyani | | | | | | | | | | IGKV, | - | - | 21,280 | - | 1,44,704 | 165,984 | | | | Raipur* | | | | | | | | | | Total | 191,665 | 234,500 | 274,238 | 322,263 | 597,635 | 1,620,301 | | | | | | | | | | | | | ^{*}Resource generation under IGKV, Revolving Fund run by STCR, scientists on production and supply of low cost rapid soil testing kit for balance fertilizer application linked with STCR technology. ## Impact of the Research Financial returns vary from soil to soil, crop to crop and location to location. However, FLDs confirmed an increase in benefit cost ratios through STCR technology over control/ farmer' practices/ application of general recommended dose which may be clearly demonstrated by the following summary table: | Crop | Location/AER | Soil
type | Fertilizer doses (kg N-P ₂ O ₅ -K ₂ O/ha) and Response ratios (RR) in terms of kg grain/kg nutrients applied | | | | | |------|--|------------------|---|---------------------------|---------|---|---------| | | | | | Generally recommende dose | ed | STCR based dose for indicated yield target, t/ha | | | | | | Fertilia | zer dose | RR | Fertilizer dose | RR | | Rice | Jabalpur/10
Hot sub-humid | Medium
black | GRD: | 80-70-40 | 8.47 | STCR Target: 3.5
Dose: 76-66-0 | 11.13 | | Rice | Coimbatore/
8.1, Hot dry
semi-arid | Alfisol
(Red) | GRD: | 120-38-38 | 16.5 | STCR Target: 7
Dose: 185-51-19
IPNS Target: 7 | 17.0 | | | | | | | | Dose: 150-67-
10+ | 19.7 | | | | | | | | GM @ 6.25 t/ha
And Azospirillum
@ 2 kg/ha | | | Rice | Narsinghpur,
MP | black | GRD: | 80-70-40 | 11.45** | STCR Target: 4
Dose: 91-74-0 | 19.07** | | Rice | Pantnagar,
Uttarakhand/
14.5 Warm
Humid/
perhumid | Mollisol
(tarai) | GRD: | 120-40-40 | 8.5 | STCR Target: 4.0
Dose: 94-36-0 | 16.15 | |------------------|--|----------------------------|------|-----------|---------|--|------------| | Wheat | Jabalpur,
MP/10
Hot sub-humid | Medium
black | GRD: | 100-60-30 | 14.77** | STCR Target: 4.0
Dose: 59-57-28 | 41.01** | | Wheat | Palampur,
HP/14.3
Warm Humid
To per humid
transitional | Hill
Soil
(Podzolic) | GRD: | 120-60-30 | 3.52 | STCR Target: 4.0
Dose:176-187-75 | 6.95 | | Wheat | Pantnagar,
Uttarakhand/
14.5 Warm
Humid/
perhumid | Mollisol
(tarai) | GRD: | 120.60-40 | 10.68 | STCR Target: 4.0
Dose:104-60-57 | 11.31 | | Finger
millet | Kolhapur,
Maharashtra
Rainfed
Submontain
zone | Black | GRD: | 60-30-0 | 10.1 | STCR Target: 1.6
Dose:45-34-17 | 10.9 | | Maize | Palampur,
HP/14.3
Warm Humid
To per humid
transitional | Hill
Soil
(Podzolic) | GRD: | 120-60-40 | 7.14 | STCR Target: 4.0
Dose:189-0-73 | 8.91 | | Chickpea | Durg,
Chattisgarh/
11 Hot/moist/
Dry sub
humid
transitional | Black | GRD: | 20-50-20 | 2.76 | STCR Target: 1.2
Dose:20-0-0 | 7.90 | | Chickpea | Jabalpur/10
Hot sub-humid | Medium
black | GRD: | 20-60-20 | 9.00 | STCR Target: 1.5
Dose: 22-36-0 | 12.76 | | Blackgram | Jabalpur/10
Hot sub-humid | Medium
black | GRD: | 20-50-20 | 0.361** | STCR Target: 1.2
Dose: 25-35-0 | 0.46** | | Groundnut | Kakapalayam
Red TN/8.1,
Hot soil dry
semi-arid | Red soil | GRD: | 18-36-54 | 6.7 | STCR Target: 2.5
Dose 50-43-72
IPNS Target: 2.5
Dose: 15-25-32
With 12.5 t/ha
FYM | 6.9
7.4 | | Groundnut | Tumkur,
Karnataka | | GRD: | 25-75-38 | 5.50 | STCR Target: 2.0
Dose: 16-144-53 | 6.20 | | Linseed | Jabalpur, | Medium | GRD: | 60-40-20 | 5.21 | STCR Target: 2.0 | 8.29 | | | MP/10 Hot sub-
humid | black | | | | Dose:89-51-19 | | |---------------------------|---|-------------------------|--------------|-----------|------------------|---|-------| | Mustard | Jabalpur, MP/10 Hot sub-humid | Medium
black | GRD: | 50-30-20 | 4.38 | STCR Target: 1.6
Dose: 68-42-16 | 5.44 | | Mustard | Jabalpur/10
Hot sub-humid | Medium
black | GRD: | 50-30-20 | 2.29 | STCR Target: 2.0
Dose: 88-46-35 | 2.34 | | Mustard | New Delhi/
4.1 Hot
Semi-arid | Alluvial
soils | GRD: | 80-40-40 | 7.8 ¹ | STCR Target: 2.5
Dose: 90-43-48 | 8.6 1 | | Safflower | Bangalore,
Karnataka/
8.2 Hot moist
Semi-arid | Black soil | GRD: | 38-50-25 | 5.78 | STCR Target: 1.5
Dose: 54-0-13 | 10.9 | | Soybean | Durg,
Chattisgarh/
11 Hot/moist/
Dry sub
humid
transitional | Black | GRD: | 20-50-20 | 15.0 | STCR Target: 2.0
Dose: 20-35-0 | 20.1 | | Soybean | Jabalpur,
MP/10
Hot sub-humid | Medium
black | GRD: | 20-80-20 | 8.28 | STCR Target: 2.5
Dose: 15-52-0 | 13.77 | | Safflower | Jabalpur,
MP/10
Hot sub-humid | Medium
black | GRD: | 80-40-25 | 4.31 | STCR Target: 2.0
Dose: 197-27.4-0 | 5.10 | | Okra
(<i>Bhendi</i>) | Suradevana-
pur, Banga-
lore/8.2 Hot
moist semi-aird | Red | GRD:
62.5 | 125-62.5- | 17.88 | STCR Target: 8
Dose: 91-74-56 | 24.25 | | Brinjal | Rahuri,
Maharashtra/
6.1 Hot dry
semi-arid | Medium
deep
black | GRD: | 150-75-75 | 73.3 | STCR Target: 5
Dose: 140-20-
110 | 124.9 | | Cabbage | Rahuri,
Maharashtra/
6.1 Hot dry
semi-arid | Medium
deep
black | GRD: | 180-80-60 | 6.88 | STCR Target: 3.5
Dose: 256-129-
193 |
5.33 | | Chilli | Thirumalay-
ampalayam,
Madukarai
Block.
Coimbatore,
TN/8.1, Hot dry
semi-arid | Red | GRD: | 75-35-35 | 3.7 | STCR Target: 2
Dose: 108-62-68 | 4.1 | IPNS = Integrated Plant Nutrient Supply: STCR =Soil Test Crop Response; * Higher yield obtained with lesser fertilizer dose than farmers' practice;** Response ratio calculated over farmers' practice; 1 Average of two demonstrations; 2 Average of four demonstrations; | Crop | Yiel | d (kg ha ⁻¹) | Benefit cost ratio | | | |-----------|------------------|---------------------------------|--------------------|---------------------------------|--| | | Farmers practice | STCR- IPNS recommended practice | Farmers practice | STCR- IPNS recommended practice | | | Rice | 5800 | 6850 | 6.8 | 17.8 | | | Maize | 4015 | 4600 | 8.2 | 12.5 | | | Sunflower | 1020 | 1490 | 4.2 | 10.5 | | | Cotton | 2753 | 2837 | 22.7 | 37.1 | | | Wheat | 3600 | 5000 | 4.5 | 4.7 | | | Bajra | 2280 | 3000 | 2.7 | 3.1 | | Also the average response ratios (kg grain/kg nutrients) obtained by the STCR technology vis-àvis farmer's practice showed a striking improvement as evidenced by the following table: | Сгор | Farmer's practice | STCR- IPNS recommended practice | |-----------|-------------------|---------------------------------| | Rice | 11.4 | 16.8 | | Wheat | 10.3 | 14.2 | | Maize | 12.7 | 17.7 | | Mustard | 8.0 | 8.2 | | Raya | 4.8 | 7.6 | | Groundnut | 5.1 | 6.8 | | Soybean | 9.6 | 12.2 | | Chickpea | 6.1 | 9.4 | Recently AICRP (STCR) also conducted demonstrations in tribal farmers' field under TSP wherein STCR recomendations proved superior. ## For further info, contact: Pradip Dey, Ph.D. Project Coordinator All India Coordinated Project on Soil Test Crop Response (AICRP-STCR) Indian Institute of Soil Science Nabibagh, Berasia Road Bhopal-462038 Madhya Pradesh India Phone: +91-755-2733314 Fax: +91-755-2733310 Alternate e-mail: pradipdey@yahoo.com Web: www.stcr.gov.in